
© 2019 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC19

Robert Kendall-Kuppe, Security Engineering and Architecture
Garrett Jacobson, Security Engineering and Architecture

•All About Notarization

•What is notarization?
•Application requirements
•Workflows

•What is notarization?
•Application requirements
•Workflows

Notarization

Notarization

Identify and block malicious software prior to distribution

Notarization

Identify and block malicious software prior to distribution

Extension of the Developer ID program

Notarization

Identify and block malicious software prior to distribution

Extension of the Developer ID program

Developers control signing and distribution

Notarization

Identify and block malicious software prior to distribution

Extension of the Developer ID program

Developers control signing and distribution

Notary service performs automated security checks

Notarization Process

Local development Distribution signing 
and testing

Distribute via  
website, etc

0100

1011Apple Notary Service

Notarization Process

Local development Distribution signing 
and testing

Distribute via  
website, etc

0100

1011Apple Notary Service

Notarization Process

Local development Distribution signing 
and testing

Distribute via  
website, etc

0100

1011Apple Notary Service

Notarization Process

Local development Distribution signing 
and testing

Distribute via  
website, etc

0100

1011

Apple Notary Service

Notarization Process

Local development Distribution signing 
and testing

Distribute via  
website, etc

0100

1011

Apple Notary Service

Checking Notarization

0100

1011Apple Notary Service

Checking Notarization

0100

1011

0100

1011

Apple Notary Service

Checking Notarization

0100

1011

0100

1011

Apple Notary Service

Checking Notarization

0100

1011

0100

1011

Apple Notary Service

Not App Review

Notarization Benefits

Notarization Benefits

Help prevent you from inadvertently shipping a malicious dependency

Notarization Benefits

Help prevent you from inadvertently shipping a malicious dependency

Apps with the hardened runtime are more secure by default

Notarization Benefits

Help prevent you from inadvertently shipping a malicious dependency

Apps with the hardened runtime are more secure by default

Users are more likely to download and try new software

Notarization Benefits

Help prevent you from inadvertently shipping a malicious dependency

Apps with the hardened runtime are more secure by default

Users are more likely to download and try new software

Audit trail of software notarized by your Developer ID account

•What is notarization?
•Application requirements
•Workflows

Application Requirements for Notarization

Previously distributed software can be submitted for notarization as-is

To protect your users, new software must adopt
• Complete and correct signing
• The Hardened Runtime

New software - signed on or after June 1, 2019

NEW

•Complete and correct signing
•Hardened Runtime
 Runtime code signing enforcement

 Library validation

 DYLD environment variable protection

 Debugging protection

 Protected resource access

Complete and Correct Signing
Sign everything

Bundles

Mach-Os

Installer packages (.pkg)

Regardless of where they live in your product

Complete and Correct Signing
Signing configuration

Complete and Correct Signing
Signing configuration

Bundles, Mach-Os and “Code” files must
• be signed with your Developer ID Application Certificate
• include a secure timestamp

Complete and Correct Signing
Signing configuration

Bundles, Mach-Os and “Code” files must
• be signed with your Developer ID Application Certificate
• include a secure timestamp

Executables must opt into the Hardened Runtime

Complete and Correct Signing
Signing configuration

Bundles, Mach-Os and “Code” files must
• be signed with your Developer ID Application Certificate
• include a secure timestamp

Executables must opt into the Hardened Runtime

Installer packages (.pkg) must be signed with your Developer ID Installer
Certificate

Complete and Correct Signing
Signing configuration

Bundles, Mach-Os and “Code” files must
• be signed with your Developer ID Application Certificate
• include a secure timestamp

Executables must opt into the Hardened Runtime

Installer packages (.pkg) must be signed with your Developer ID Installer
Certificate

If you sign your disk images (.dmg), they must be signed with your Developer ID
Application Certificate and include a secure timestamp

Complete and Correct Signing
Xcode does it for you

Use Xcode to manage the packaging and organization of your code

Turn on Automatic Code Signing

Be careful with
• Script build phases
• Copy build phases

Location Description

Contents Top content directory of the bundle

Contents/MacOS Helper apps and tools

Contents/Frameworks Frameworks, dylibs

Contents/PlugIns Plug-ins, both loadable and Extensions

Contents/XPCServices XPC services

Contents/Helpers Helper apps and tools

Contents/Library/Automator Automator actions

Contents/Library/Spotlight Spotlight importers

Contents/Library/LoginItems Installable login items

Complete and Correct Signing
Code places

Complete and Correct Signing
Inside-out signing

WatchingGrassGrow.app Contents

MacOS

Frameworks

Info.plist

Extras

Resources

WatchingGrassGrowHelper

Sparkle.framework

growGrass.dylib

WatchingGrassGrow.saver

Versions

WatchingGrassGrow

A Resources

Sparkle

Updater.app

Complete and Correct Signing
Inside-out signing

WatchingGrassGrow.app Contents

MacOS

Frameworks

Info.plist

Extras

Resources

WatchingGrassGrowHelper

Sparkle.framework

growGrass.dylib

WatchingGrassGrow.saver

Versions

WatchingGrassGrow

A Resources

Sparkle

Updater.app

Complete and Correct Signing
Inside-out signing

WatchingGrassGrow.app Contents

MacOS

Frameworks

Info.plist

Extras

Resources

WatchingGrassGrowHelper

Sparkle.framework

growGrass.dylib

WatchingGrassGrow.saver

Versions

WatchingGrassGrow

A Resources

Sparkle

Updater.app

Complete and Correct Signing
“-- deep” is not enough

See TN2206: Code Signing in depth for more Information

WatchingGrassGrow.app Contents

MacOS

Frameworks

Info.plist

Extras

Resources

WatchingGrassGrowHelper

Sparkle.framework

growGrass.dylib

WatchingGrassGrow.saver

Versions

WatchingGrassGrow

A Resources

Sparkle

Updater.app

Complete and Correct Signing
Do not invalidate your signature

Complete and Correct Signing
Do not invalidate your signature

 Never change files in your signed bundles except during installation or update

Complete and Correct Signing
Do not invalidate your signature

 Never change files in your signed bundles except during installation or update

 After an update, make sure your product still has valid signatures and is notarized

•Complete and correct signing
•Hardened Runtime
 Runtime code signing enforcement

 Library validation

 DYLD environment variable protection

 Debugging protection

 Protected resource access

Adopting the Hardened Runtime
Why?

Extends many of macOS’s System Integrity Protection features to your apps
• Runtime code signing enforcement
• Library validation
• DYLD environment variable protection
• Debugging protection

Configurable via entitlements that are available to all developers

Adopting the Hardened Runtime
Configuration in Xcode

// Developer Workflow – Terminal

Signature
$> codesign --sign “Developer ID” —-timestamp --options runtime WatchGrassGrow.app
WatchGrassGrow.app: signed app bundle with Mach-O thin (x86_64) [com.acme.WatchGrassGrow]

Verification
$> codesign --display --verbose=2 WatchGrassGrow.app
Executable=WatchGrassGrow.app/Contents/MacOS/WatchGrassGrow
Identifier=com.acme.WatchGrassGrow
Format=app bundle with Mach-O thin (x86_64)
CodeDirectory v=20500 size=566 flags=0x10000(runtime) hashes=11+3 location=embedded
Signature size=4605
Info.plist entries=22
TeamIdentifier=XXXXXXXXXX
Runtime Version=10.14.0

Adopting the Hardened Runtime
Using codesign

// Developer Workflow – Terminal

Signature
$> codesign --sign “Developer ID” —-timestamp --options runtime WatchGrassGrow.app
WatchGrassGrow.app: signed app bundle with Mach-O thin (x86_64) [com.acme.WatchGrassGrow]

Verification
$> codesign --display --verbose=2 WatchGrassGrow.app
Executable=WatchGrassGrow.app/Contents/MacOS/WatchGrassGrow
Identifier=com.acme.WatchGrassGrow
Format=app bundle with Mach-O thin (x86_64)
CodeDirectory v=20500 size=566 flags=0x10000(runtime) hashes=11+3 location=embedded
Signature size=4605
Info.plist entries=22
TeamIdentifier=XXXXXXXXXX
Runtime Version=10.14.0

Adopting the Hardened Runtime
Using codesign

// Developer Workflow – Terminal

Signature
$> codesign --sign “Developer ID” —-timestamp --options runtime WatchGrassGrow.app
WatchGrassGrow.app: signed app bundle with Mach-O thin (x86_64) [com.acme.WatchGrassGrow]

Verification
$> codesign --display --verbose=2 WatchGrassGrow.app
Executable=WatchGrassGrow.app/Contents/MacOS/WatchGrassGrow
Identifier=com.acme.WatchGrassGrow
Format=app bundle with Mach-O thin (x86_64)
CodeDirectory v=20500 size=566 flags=0x10000(runtime) hashes=11+3 location=embedded
Signature size=4605
Info.plist entries=22
TeamIdentifier=XXXXXXXXXX
Runtime Version=10.14.0

Adopting the Hardened Runtime
Using codesign

// Developer Workflow – Terminal

Signature
$> codesign --sign “Developer ID” —-timestamp --options runtime WatchGrassGrow.app
WatchGrassGrow.app: signed app bundle with Mach-O thin (x86_64) [com.acme.WatchGrassGrow]

Verification
$> codesign --display --verbose=2 WatchGrassGrow.app
Executable=WatchGrassGrow.app/Contents/MacOS/WatchGrassGrow
Identifier=com.acme.WatchGrassGrow
Format=app bundle with Mach-O thin (x86_64)
CodeDirectory v=20500 size=566 flags=0x10000(runtime) hashes=11+3 location=embedded
Signature size=4605
Info.plist entries=22
TeamIdentifier=XXXXXXXXXX
Runtime Version=10.14.0

Adopting the Hardened Runtime
Using codesign

// Developer Workflow – Terminal

Signature
$> codesign --sign “Developer ID” —-timestamp --options runtime WatchGrassGrow.app
WatchGrassGrow.app: signed app bundle with Mach-O thin (x86_64) [com.acme.WatchGrassGrow]

Verification
$> codesign --display --verbose=2 WatchGrassGrow.app
Executable=WatchGrassGrow.app/Contents/MacOS/WatchGrassGrow
Identifier=com.acme.WatchGrassGrow
Format=app bundle with Mach-O thin (x86_64)
CodeDirectory v=20500 size=566 flags=0x10000(runtime) hashes=11+3 location=embedded
Signature size=4605
Info.plist entries=22
TeamIdentifier=XXXXXXXXXX
Runtime Version=10.14.0

Adopting the Hardened Runtime
Using codesign

•Complete and correct signing
•Hardened Runtime
 Runtime code signing enforcement

 Library validation

 DYLD environment variable protection

 Debugging protection

 Protected resource access

Adopting the Hardened Runtime
Runtime code signing enforcement

Adopting the Hardened Runtime
Runtime code signing enforcement

Prevents creation of executable memory without an associated code signature

Adopting the Hardened Runtime
Runtime code signing enforcement

Prevents creation of executable memory without an associated code signature

Ensures that all bytes mapped into your process match their associated code
signature when read from disk
• Including non-executable mappings

Adopting the Hardened Runtime
Runtime code signing enforcement

Prevents creation of executable memory without an associated code signature

Ensures that all bytes mapped into your process match their associated code
signature when read from disk
• Including non-executable mappings

Prevents execution from modified memory that doesn’t match its signature

Adopting the Hardened Runtime
Developing with runtime code signing enforcement

Issue: My app runs non-native code, and I want that code to run blazing fast with
JIT, but my app crashes when I enable Hardened Runtime

Adopting the Hardened Runtime
Developing with runtime code signing enforcement

Issue: My app runs non-native code, and I want that code to run blazing fast with
JIT, but my app crashes when I enable Hardened Runtime

Recommended Solution

• Adopt the “com.apple.security.cs.allow-jit” entitlement

• Use mmap and the MAP_JIT flag to allocate anonymous Read/Write/Execute
memory

Issue: My app runs non-native code, and I want that code to run blazing fast with
JIT, but my app crashes when I enable Hardened Runtime

Adopting the Hardened Runtime
Developing with runtime code signing enforcement

Issue: My app runs non-native code, and I want that code to run blazing fast with
JIT, but my app crashes when I enable Hardened Runtime

Adopting the Hardened Runtime
Developing with runtime code signing enforcement

Fallback Solution
• Disable Runtime Code Signing Enforcement with the

“com.apple.security.cs.allow-unsigned-executable-memory” entitlement
• Bytes mapped from disk will still be checked against any associated  

code signature

Adopting the Hardened Runtime
Developing with runtime code signing enforcement

Issue: My app patches system frameworks it loads into memory to  
accomplish “…” but now my app crashes when I enable Hardened Runtime

Adopting the Hardened Runtime
Developing with runtime code signing enforcement

Issue: My app patches system frameworks it loads into memory to  
accomplish “…” but now my app crashes when I enable Hardened Runtime

Recommended Solution
• Don’t do this
• (Library Validation may meet your use case)

Adopting the Hardened Runtime
Developing with runtime code signing enforcement

Issue: My app patches system frameworks it loads into memory to  
accomplish “…” but now my app crashes when I enable Hardened Runtime

Recommended Solution
• Don’t do this
• (Library Validation may meet your use case)

Fallback Solution
• Disable Runtime Code Signing Enforcement with the

“com.apple.security.cs.allow-unsigned-executable-memory” entitlement

Adopting the Hardened Runtime
Developing with runtime code signing enforcement

Issue: My app crashes when I adopt the Hardened Runtime and then run my auto
update mechanism

Adopting the Hardened Runtime
Developing with runtime code signing enforcement

Issue: My app crashes when I adopt the Hardened Runtime and then run my auto
update mechanism

Explanation: Code signatures are latched to files on first use. Modifying files in
place causes a signature mismatch

Adopting the Hardened Runtime
Developing with runtime code signing enforcement

Issue: My app crashes when I adopt the Hardened Runtime and then run my auto
update mechanism

Explanation: Code signatures are latched to files on first use. Modifying files in
place causes a signature mismatch

Recommended Solution
• Whenever you update a signed file, create a new file

•Complete and correct signing
•Hardened Runtime
 Runtime code signing enforcement

 Library validation

 DYLD environment variable protection

 Debugging protection

 Protected resource access

Adopting the Hardened Runtime
Library validation

Adopting the Hardened Runtime
Library validation

Protects your app from code injection and dylibs hijacking

Adopting the Hardened Runtime
Library validation

Protects your app from code injection and dylibs hijacking

Allows your app to only load code signed by
• Your team
• Apple

Adopting the Hardened Runtime
Library validation

Protects your app from code injection and dylibs hijacking

Allows your app to only load code signed by
• Your team
• Apple

Prevents loading unsigned and adhoc signed code

Adopting the Hardened Runtime
Library validation

Protects your app from code injection and dylibs hijacking

Allows your app to only load code signed by
• Your team
• Apple

Prevents loading unsigned and adhoc signed code

Note: Make sure you use Apple Development Certificates for building and testing locally

Adopting the Hardened Runtime
Developing with library validation

Issue: My app loads plugins from other developers in-process, but plug-in loading
fails when I adopt the Hardened Runtime

Adopting the Hardened Runtime
Developing with library validation

Issue: My app loads plugins from other developers in-process, but plug-in loading
fails when I adopt the Hardened Runtime

Recommended Solution
• Consider moving to an out of process plugin model

Adopting the Hardened Runtime
Developing with library validation

Issue: My app loads plugins from other developers in-process, but plug-in loading
fails when I adopt the Hardened Runtime

Recommended Solution
• Consider moving to an out of process plugin model

Fallback Solution
• Use the “com.apple.security.cs.disable-library-validation” entitlement
• Allows loading unsigned and adhoc signed plug-ins

•Complete and correct signing
•Hardened Runtime
 Runtime code signing enforcement

 Library validation

 DYLD environment variable protection

 Debugging protection

 Protected resource access

Adopting the Hardened Runtime
DYLD environment variable protections

Adopting the Hardened Runtime
DYLD environment variable protections

DYLD environment variables can inject libraries and modify your framework and
library search paths, examples
• DYLD_LIBRARY_PATH
• DYLD_INSERT_LIBRARIES
• DYLD_FRAMEWORK_PATH

Note: see “man 1 dyld” for the complete list

Adopting the Hardened Runtime
DYLD environment variable protections

DYLD environment variables can inject libraries and modify your framework and
library search paths, examples
• DYLD_LIBRARY_PATH
• DYLD_INSERT_LIBRARIES
• DYLD_FRAMEWORK_PATH

Hardened Runtime blocks these variables by default

Note: see “man 1 dyld” for the complete list

Adopting the Hardened Runtime
Developing with DYLD environment variable protections

Issue: I need to use DYLD environment variables while building and debugging my
app, but they are being ignored when I enable Hardened Runtime

Adopting the Hardened Runtime
Developing with DYLD environment variable protections

Issue: I need to use DYLD environment variables while building and debugging my
app, but they are being ignored when I enable Hardened Runtime

Recommended Solution
• Use the “com.apple.security.get-task-allow” entitlement on your debug build

Adopting the Hardened Runtime
Developing with DYLD environment variable protections

Issue: I need to use DYLD environment variables while building and debugging my
app, but they are being ignored when I enable Hardened Runtime

Note: The notary service generally refuses files signed with “com.apple.security.get-task-allow”

Recommended Solution
• Use the “com.apple.security.get-task-allow” entitlement on your debug build

Adopting the Hardened Runtime
Developing with DYLD environment variable protections

Issue: My app uses DYLD environment variables when it ships to my customers
and now it doesn’t work with Hardened Runtime

Adopting the Hardened Runtime
Developing with DYLD environment variable protections

Issue: My app uses DYLD environment variables when it ships to my customers
and now it doesn’t work with Hardened Runtime

Recommend Solution
• Don’t do this

Adopting the Hardened Runtime
Developing with DYLD environment variable protections

Issue: My app uses DYLD environment variables when it ships to my customers
and now it doesn’t work with Hardened Runtime

Recommend Solution
• Don’t do this

Fallback Solution
• Use the “com.apple.security.cs.allow-dyld-environment-variables” entitlement

•Complete and correct signing
•Hardened Runtime
 Runtime code signing enforcement

 Library validation

 DYLD environment variable protection

 Debugging protection

 Protected resource access

Adopting the Hardened Runtime
Debugging protection

Adopting the Hardened Runtime
Debugging protection

Debuggers allow developers to

Adopting the Hardened Runtime
Debugging protection

Debuggers allow developers to
• Inspect the state of registers and memory

Adopting the Hardened Runtime
Debugging protection

Debuggers allow developers to
• Inspect the state of registers and memory
• Modify process memory

Adopting the Hardened Runtime
Debugging protection

Debuggers allow developers to
• Inspect the state of registers and memory
• Modify process memory

Debuggers allow attackers to

Adopting the Hardened Runtime
Debugging protection

Debuggers allow developers to
• Inspect the state of registers and memory
• Modify process memory

Debuggers allow attackers to
• Steal sensitive user data

Adopting the Hardened Runtime
Debugging protection

Debuggers allow developers to
• Inspect the state of registers and memory
• Modify process memory

Debuggers allow attackers to
• Steal sensitive user data
• Inject malicious code

Adopting the Hardened Runtime
Debugging protection

Debuggers allow developers to
• Inspect the state of registers and memory
• Modify process memory

Debuggers allow attackers to
• Steal sensitive user data
• Inject malicious code

Hardened Runtime prevents debugging of hardened processes by default

Adopting Hardened Runtime
Developing with debugging protections

Issue: How can I build and test with the Hardened Runtime if I cannot attach  
a debugger?

Adopting Hardened Runtime
Developing with debugging protections

Issue: How can I build and test with the Hardened Runtime if I cannot attach  
a debugger?

Solution
• Use the “com.apple.security.get-task-allow” entitlement on your debug build
• Xcode does this for you

Adopting Hardened Runtime
Developing with debugging protections

Issue: How can I build and test with the Hardened Runtime if I cannot attach  
a debugger?

Note: Running an app under a debugger will mask Hardened Runtime related issues
•Be sure to test a release build
•If you need a debug build without “com.apple.security.get-task-allow” set CODE_SIGN_INJECT_BASE_ENTITLEMENTS=NO

Solution
• Use the “com.apple.security.get-task-allow” entitlement on your debug build
• Xcode does this for you

Adopting Hardened Runtime
Developing with debugging protections

Issue: My app supports an in-process plug-in ecosystem. How can my plug-in
developers debug their plug-ins?

Adopting Hardened Runtime
Developing with debugging protections

Issue: My app supports an in-process plug-in ecosystem. How can my plug-in
developers debug their plug-ins?

Recommended Solution
• Move to an out of process plug-in model

Adopting Hardened Runtime
Developing with debugging protections

Issue: My app supports an in-process plug-in ecosystem. How can my plug-in
developers debug their plug-ins?

Recommended Solution
• Move to an out of process plug-in model

Alternative Solution
• Ship a debug version to registered plug-in developers

Fallback Solution
• Combine “com.apple.security.get-task-allow” with  

“com.apple.security.cs.disable-library-validation”

Adopting Hardened Runtime
Developing with debugging protections

Issue: My app supports an in-process plug-in ecosystem. How can my plug-in
developers debug their plug-ins?

Recommended Solution
• Move to an out of process plug-in model

Alternative Solution
• Ship a debug version to registered plug-in developers

•Complete and correct signing
•Hardened Runtime
 Runtime code signing enforcement

 Library validation

 DYLD environment variable protection

 Debugging protection

 Protected resource access

Adopting the Hardened Runtime
Resource access protections

Your customers use their Macs to store tons of information about their lives

Your app needs to declare its intent to access protected resources

Resource Access Requirements

Description Entitlement Usage string Info.plist key

Audio input and microphone com.apple.security.device.audio-input NSMicrophoneUsageDescription

Any camera exposed via AVFoundation com.apple.security.device.camera NSCameraUsageDescription

Location com.apple.security.personal-information.location NSPhotoLibraryUsageDescription

Contacts com.apple.security.personal-information.addressbook NSPhotoLibraryUsageDescription

Calendars and Reminders com.apple.security.personal-information.calendars NSCalendarUsageDescription

Apple Photos library com.apple.security.personal-information.photos-library NSPhotoLibraryUsageDescription

Sending Apple Events to other apps com.apple.security.automation.apple-events NSAppleEventsUsageDescription

Adopting Hardened Runtime
Recommendations

Adopting Hardened Runtime
Recommendations

Take only the entitlements you need

Adopting Hardened Runtime
Recommendations

Take only the entitlements you need

Apply entitlements only to the processes in your app that need them

Adopting Hardened Runtime
Recommendations

Take only the entitlements you need

Apply entitlements only to the processes in your app that need them

When declaring resource access, only set the entitlements  
and usage strings on your main bundle

•What is notarization?
•Application requirements
•Workflows

Notarization Workflow

Notarization Workflow

Submit your software

Notarization Workflow

Submit your software

Check processing status

Notarization Workflow

Submit your software

Check processing status

Staple ticket(s)

Notarization Workflow

Submit your software

Check processing status

Staple ticket(s)

Verify notarization

Submitting Your Software

Submitting Your Software

Submit all software you distribute

Submitting Your Software

Submit all software you distribute

OK to upload more regularly
• Not worth uploading every CI build

Submitting Your Software

Submit all software you distribute

OK to upload more regularly
• Not worth uploading every CI build

Anyone on the team can submit software

Xcode
Submit your app

Xcode
Submit your app

Xcode
Submit your app

Xcode
Submit your app

Xcode
Check status

Xcode
Check status

Xcode
Staple your app

Supported formats
• Disk images (.dmg files)
• Installer packages (.pkg files)
• Zip archives (.zip files)

Custom Workflow
Submit your software

Supported formats
• Disk images (.dmg files)
• Installer packages (.pkg files)
• Zip archives (.zip files)

When creating an archive, ensure you preserve macOS-specific metadata
• Support in ditto and Archive Utility

Custom Workflow
Submit your software

You may need two-step notarization if your custom installer
• Pulls down additional content from the web
• Uses a custom packing format

Custom Workflow
Submit your software

You may need two-step notarization if your custom installer
• Pulls down additional content from the web
• Uses a custom packing format

Two step notarization process
• Submit the content as it will appear on disk
• Submit your custom installer

Custom Workflow
Submit your software

Custom Workflow
Submit your software

$ sudo xcode-select -s /Applications/Xcode.app
$ xcrun altool --notarize-app
 --primary-bundle-id "com.acme.WatchGrassGrow" --file "WatchGrassGrow.zip"
 --username "USERNAME" --password "@keychain:ITEM_NAME"
Result:
altool[16765:378423] No errors uploading ‘WatchGrassGrow.zip’.
RequestUUID = 2EFE2717-52EF-43A5-96DC-0797E4CA1041

Custom Workflow
Submit your software

$ sudo xcode-select -s /Applications/Xcode.app
$ xcrun altool --notarize-app
 --primary-bundle-id "com.acme.WatchGrassGrow" --file "WatchGrassGrow.zip"
 --username "USERNAME" --password "@keychain:ITEM_NAME"
Result:
altool[16765:378423] No errors uploading ‘WatchGrassGrow.zip’.
RequestUUID = 2EFE2717-52EF-43A5-96DC-0797E4CA1041

Custom Workflow
Submit your software

$ sudo xcode-select -s /Applications/Xcode.app
$ xcrun altool --notarize-app
 --primary-bundle-id "com.acme.WatchGrassGrow" --file "WatchGrassGrow.zip"
 --username "USERNAME" --password "@keychain:ITEM_NAME"
Result:
altool[16765:378423] No errors uploading ‘WatchGrassGrow.zip’.
RequestUUID = 2EFE2717-52EF-43A5-96DC-0797E4CA1041

Custom Workflow
Check status

$ xcrun altool --notarization-info 2EFE2717-52EF-43A5-96DC-0797E4CA1041
 --username "USERNAME" —password "@keychain:ITEM_NAME"
 RequestUUID: 64e86b52-4911-4b63-9cca-590d7fb8d4fe
 Date: 2019-05-26 22:51:35 +0000
 Status: success
 LogFileURL: https://osxapps-ssl.itunes.apple.com/…
 Status Code: 0
Status Message: Package Approved

Custom Workflow
Check status

$ xcrun altool --notarization-info 2EFE2717-52EF-43A5-96DC-0797E4CA1041
 --username "USERNAME" —password "@keychain:ITEM_NAME"
 RequestUUID: 64e86b52-4911-4b63-9cca-590d7fb8d4fe
 Date: 2019-05-26 22:51:35 +0000
 Status: success
 LogFileURL: https://osxapps-ssl.itunes.apple.com/…
 Status Code: 0
Status Message: Package Approved

Custom Workflow
Check status

$ xcrun altool --notarization-info 2EFE2717-52EF-43A5-96DC-0797E4CA1041
 --username "USERNAME" —password "@keychain:ITEM_NAME"
 RequestUUID: 64e86b52-4911-4b63-9cca-590d7fb8d4fe
 Date: 2019-05-26 22:51:35 +0000
 Status: success
 LogFileURL: https://osxapps-ssl.itunes.apple.com/…
 Status Code: 0
Status Message: Package Approved

Custom Workflow
Check status

$ xcrun altool --notarization-info 2EFE2717-52EF-43A5-96DC-0797E4CA1041
 --username "USERNAME" —password "@keychain:ITEM_NAME"
 RequestUUID: 64e86b52-4911-4b63-9cca-590d7fb8d4fe
 Date: 2019-05-26 22:51:35 +0000
 Status: success
 LogFileURL: https://osxapps-ssl.itunes.apple.com/…
 Status Code: 0
Status Message: Package Approved

Custom Workflow
Check status

{
 "archiveFilename": "Watch_Grass_Grow.zip",
 "issues": […],
 "jobId": "64e86b52-4911-4b63-9cca-590d7fb8d4fe",
 "logFormatVersion": 1,
 "sha256": "d18f8c91cdf08af3aae8e6983dc8f7535264f8cfe89791a03b54b22f6b6c5fbd",
 "status": "Accepted",
 "statusCode": 0,
 "statusSummary": "Ready for distribution",
 "ticketContents": […],
 “uploadDate”: “2019-05-26T22:51:35Z"
}

Custom Workflow
Check status

{
 "archiveFilename": "Watch_Grass_Grow.zip",
 "issues": […],
 "jobId": "64e86b52-4911-4b63-9cca-590d7fb8d4fe",
 "logFormatVersion": 1,
 "sha256": "d18f8c91cdf08af3aae8e6983dc8f7535264f8cfe89791a03b54b22f6b6c5fbd",
 "status": "Accepted",
 "statusCode": 0,
 "statusSummary": "Ready for distribution",
 "ticketContents": […],
 “uploadDate”: “2019-05-26T22:51:35Z"
}

Custom Workflow
Check status

{
 "archiveFilename": "Watch_Grass_Grow.zip",
 "issues": […],
 "jobId": "64e86b52-4911-4b63-9cca-590d7fb8d4fe",
 "logFormatVersion": 1,
 "sha256": "d18f8c91cdf08af3aae8e6983dc8f7535264f8cfe89791a03b54b22f6b6c5fbd",
 "status": "Accepted",
 "statusCode": 0,
 "statusSummary": "Ready for distribution",
 "ticketContents": […],
 “uploadDate”: “2019-05-26T22:51:35Z"
}

Custom Workflow
Check status

{
 "archiveFilename": "Watch_Grass_Grow.zip",
 "issues": […],
 "jobId": "64e86b52-4911-4b63-9cca-590d7fb8d4fe",
 "logFormatVersion": 1,
 "sha256": "d18f8c91cdf08af3aae8e6983dc8f7535264f8cfe89791a03b54b22f6b6c5fbd",
 "status": "Accepted",
 "statusCode": 0,
 "statusSummary": "Ready for distribution",
 "ticketContents": […],
 “uploadDate”: “2019-05-26T22:51:35Z"
}

Notarization Success

Custom Workflow
Staple

If you submitted a pkg or dmg you can staple it directly
•$ xcrun stapler staple <path-to-item>

Custom Workflow
Staple

If you submitted a pkg or dmg you can staple it directly
•$ xcrun stapler staple <path-to-item>

If you submitted a zip file, it cannot be stapled directly, instead
• Unpack the zip file
• Invoke the stapler tool on each bundle individually
• Re-zip everything for distribution

Custom Workflow
Staple

If you submitted a pkg or dmg you can staple it directly
•$ xcrun stapler staple <path-to-item>

If you submitted a zip file, it cannot be stapled directly, instead
• Unpack the zip file
• Invoke the stapler tool on each bundle individually
• Re-zip everything for distribution

Stapling of command line tools/standalone dylibs is not currently supported
• Standalone binaries should be notarized

Custom Workflow
Staple

Is an application, disk image, or package stapled?

Verifying Notarization

$ xcrun stapler validate <path-to-item>
Processing: <path>
The validate action worked!

Is this application I downloaded notarized?

Verifying Notarization

$ spctl --assess --verbose <path-to-app>
<path-to-app>: accepted
source=Notarized Developer ID

Is this package I downloaded notarized?

Verifying Notarization

$ spctl --assess --verbose --type install <path-to-pkg>
<path-to-pkg>: accepted
source=Notarized Developer ID

Is this signed disk image I downloaded notarized?

Verifying Notarization

$ spctl --assess --verbose --type open —-context "context:primary-signature" <path-to-dmg>
<path-to-dmg>: accepted
source=Notarized Developer ID

Is this other binary I downloaded notarized?

Verifying Notarization

$ codesign —-verify --verbose —-test-requirement=“notarized” <path-to-binary>
<path-to-binary>: valid on disk
<path-to-binary>: satisfies its Designated Requirement
<path-to-binary>: explicit requirement satisfied

Notary Service History

Notary Service History

Notarization History - page 0

Date RequestUUID Status Status Code Status Message

------------------------- ------------------------------------ ------- ----------- ----------------

2019-05-31 05:16:55 +0000 e5652174-52b8-4a8c-9fe5-3409f78c9147 success 0 Package Approved

2019-05-26 22:51:35 +0000 64e86b52-4911-4b63-9cca-590d7fb8d4fe success 0 Package Approved

Next page value: 1558911095000

$ xcrun altool --notarization-history -u "USERNAME" -p "@keychain:ITEM_NAME"

Notary Service History

Notarization History - page 0

Date RequestUUID Status Status Code Status Message

------------------------- ------------------------------------ ------- ----------- ----------------

2019-05-31 05:16:55 +0000 e5652174-52b8-4a8c-9fe5-3409f78c9147 success 0 Package Approved

2019-05-26 22:51:35 +0000 64e86b52-4911-4b63-9cca-590d7fb8d4fe success 0 Package Approved

Next page value: 1558911095000

$ xcrun altool --notarization-history -u "USERNAME" -p "@keychain:ITEM_NAME"

Summary

Summary

Sign all your software properly

Summary

Sign all your software properly

Do not take Hardened Runtime entitlements you do not need

Summary

Sign all your software properly

Do not take Hardened Runtime entitlements you do not need

Notarize and staple everything you distribute

More Information
developer.apple.com/wwdc19/703

Mac App Notarization Lab Tuesday, 4:00

Signing and Distributing Lab Thursday, 9:00 Friday, 9:00

Security Lab Thursday, 2:00

