
© 2019 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC19

•Improving Battery Life  
and Performance

Phillip Azar, Software Engineer
Sastry Vadlamani, Software Engineer
Ashish Patro, Software Engineer
Anshul Dawra, Software Engineer

•Tools overview
•Metrics overview
•Deep dives and Demos
•Summary

•Tools overview
•Metrics overview
•Deep dives and Demos
•Summary

The Development Process, Abridged
Building your app comes in phases

The Development Process, Abridged
Building your app comes in phases

Development 
and Testing

The Development Process, Abridged
Building your app comes in phases

BetaDevelopment 
and Testing

The Development Process, Abridged
Building your app comes in phases

BetaDevelopment 
and Testing

Public Release

Every step is important

BetaDevelopment 
and Testing

Public Release

BetaDevelopment 
and Testing

Public Release

BetaDevelopment 
and Testing

Public Release

BetaDevelopment 
and Testing

Public Release

There are gaps we can fill

gaps

Metrics

New Tools for Gathering Metrics
NEW

New Tools for Gathering Metrics
NEW

XCTest Metrics

New Tools for Gathering Metrics
NEW

XCTest Metrics
• Performance of measure blocks

New Tools for Gathering Metrics
NEW

XCTest Metrics
• Performance of measure blocks

MetricKit

New Tools for Gathering Metrics
NEW

XCTest Metrics
• Performance of measure blocks

MetricKit
• Framework for battery and performance metrics collection

New Tools for Gathering Metrics
NEW

XCTest Metrics
• Performance of measure blocks

MetricKit
• Framework for battery and performance metrics collection

Xcode Metrics Organizer

New Tools for Gathering Metrics
NEW

XCTest Metrics
• Performance of measure blocks

MetricKit
• Framework for battery and performance metrics collection

Xcode Metrics Organizer
• Aggregated battery, performance, and I/O metrics in Xcode

BetaDevelopment 
and Testing

Public Release

BetaDevelopment 
and Testing

Public Release

XCTest Metrics

BetaDevelopment 
and Testing

Public Release

MetricKit

BetaDevelopment 
and Testing

Public Release

Xcode Metrics Organizer

BetaDevelopment 
and Testing

Public Release

XCTest Metrics
MetricKit

More metrics at every stage of development

Xcode Metrics Organizer

•Tools overview
•Metrics overview
•Deep dives and Demos
•Summary

Metrics Are the Key
This year, two categories of metrics

Battery Performance

Battery Metrics

Battery Metrics

Processing

Battery Metrics

LocationProcessing

Battery Metrics

LocationProcessing Display

Battery Metrics

Location NetworkingProcessing Display

Battery Metrics

Location NetworkingProcessing Display Accessories

Battery Metrics

Location Networking MultimediaProcessing Display Accessories

Battery Metrics

Location Networking Multimedia CameraProcessing Display Accessories

Battery Metrics

Location Networking Multimedia CameraProcessing Display Accessories

Processing Metrics

Processing Metrics

CPU time, GPU time, etc

Processing Metrics

CPU time, GPU time, etc

Use these metrics to understand workloads

Processing Metrics

CPU time, GPU time, etc

Use these metrics to understand workloads
• CPU spinners

Processing Metrics

CPU time, GPU time, etc

Use these metrics to understand workloads
• CPU spinners
• Unexpected rendering

Processing Metrics

CPU time, GPU time, etc

Use these metrics to understand workloads
• CPU spinners
• Unexpected rendering

Compare algorithmic efficiency of features

Location Metrics

Location Metrics

Cumulative usage time, background time, etc.

Location Metrics

Cumulative usage time, background time, etc.

Use these to understand location usage

Location Metrics

Cumulative usage time, background time, etc.

Use these to understand location usage
• Identify cases where location is left on

Location Metrics

Cumulative usage time, background time, etc.

Use these to understand location usage
• Identify cases where location is left on
• Validate location accuracy usage

Display Metrics

Display Metrics

Average Pixel Luminance

Display Metrics

Average Pixel Luminance

Color of UI on OLED displays impacts energy

Display Metrics

Average Pixel Luminance

Color of UI on OLED displays impacts energy
• Lighter colors = more energy (high APL)

Display Metrics

Average Pixel Luminance

Color of UI on OLED displays impacts energy
• Lighter colors = more energy (high APL)
• Darker colors = less energy (low APL)

Networking Metrics

Networking Metrics

Upload and download bytes, connectivity, etc.

Networking Metrics

Upload and download bytes, connectivity, etc.

Optimize networking usage whenever possible

Networking Metrics

Upload and download bytes, connectivity, etc.

Optimize networking usage whenever possible
• Validate expected upload/download

Networking Metrics

Upload and download bytes, connectivity, etc.

Optimize networking usage whenever possible
• Validate expected upload/download
• Understand impact of poor connectivity

Battery Metrics

Location Networking Multimedia CameraProcessing Display Accessories

Performance Metrics

Performance Metrics

Hangs

Performance Metrics

Hangs Disk

Performance Metrics

Hangs Application 
Launch

Disk

Performance Metrics

Hangs Application 
Launch

Disk Memory

Performance Metrics

Hangs Application 
Launch

Disk Memory Custom 
Intervals

Performance Metrics

Hangs Application 
Launch

Disk Memory Custom 
Intervals

Hang Metrics

Hang Metrics

Histogram of application hang time

Hang Metrics

Histogram of application hang time

Huge user impact

Hang Metrics

Histogram of application hang time

Huge user impact
• Move work off the main thread if possible

Hang Metrics

Histogram of application hang time

Huge user impact
• Move work off the main thread if possible
• Utilize dispatches and queues for async tasks

Disk Metrics

Disk Metrics

Disk Logical Writes

Disk Metrics

Disk Logical Writes

Quantify disk usage with these metrics

Disk Metrics

Disk Logical Writes

Quantify disk usage with these metrics
• Identify instances of unexpected disk writes

Disk Metrics

Disk Logical Writes

Quantify disk usage with these metrics
• Identify instances of unexpected disk writes
• Validate coalescing strategies

Application Launch Metrics

Application Launch Metrics

Launch time histogram, resume time histogram

Application Launch Metrics

Launch time histogram, resume time histogram

Quantify launch and resume with these metrics

Application Launch Metrics

Launch time histogram, resume time histogram

Quantify launch and resume with these metrics
• Understand impact of launch activities

Application Launch Metrics

Launch time histogram, resume time histogram

Quantify launch and resume with these metrics
• Understand impact of launch activities
• See differences between launch and resume

Application Launch Metrics

Launch time histogram, resume time histogram

Quantify launch and resume with these metrics
• Understand impact of launch activities
• See differences between launch and resume

Optimizing App Launch Friday, 4:20

Memory Metrics

Memory Metrics

Average Suspended Memory, Peak Memory

Memory Metrics

Average Suspended Memory, Peak Memory

Memory management can impact launch times

Memory Metrics

Average Suspended Memory, Peak Memory

Memory management can impact launch times

Use these metrics to understand memory usage

Memory Metrics

Average Suspended Memory, Peak Memory

Memory management can impact launch times

Use these metrics to understand memory usage
• Identify hard to reproduce memory leaks

Memory Metrics

Average Suspended Memory, Peak Memory

Memory management can impact launch times

Use these metrics to understand memory usage
• Identify hard to reproduce memory leaks
• Reduce average memory on suspend

Performance Metrics

Hangs Disk MemoryApplication 
Launch

Custom 
Intervals

BetaDevelopment 
and Testing

Public Release

XCTest Metrics
MetricKit

Xcode Metrics Organizer

BetaDevelopment 
and Testing

Public Release

XCTest Metrics
MetricKit

Xcode Metrics Organizer

NEW

•Tools overview
•Metrics overview
•Deep dives and Demos
•Summary

Sastry Vadlamani, Software Engineer

•Measuring App Impact during
Development and Testing

Xcode Debug Navigator

Xcode Debug Navigator

Xcode Debug Navigator

Templates in Instruments

Templates in Instruments

Allocations

Templates in Instruments

Time ProfilerAllocations

Templates in Instruments

Time ProfilerAllocations System Usage

Templates in Instruments

Time ProfilerAllocations System Usage Energy Log

Collecting Metrics Using XCTest

Collecting Metrics Using XCTest

Catch regressions with baselines

Collecting Metrics Using XCTest

Catch regressions with baselines

New performance metrics

NEW

// This test measures time, memory, and CPU impact

func testPhotoUploadPerformance() {
 let app = XCUIApplication()
 measure() {

 app.buttons["Apply Effect"].tap()
 app.dialogs["alert"].buttons["OK"].tap()
 }
}

// This test measures time, memory, and CPU impact

func testPhotoUploadPerformance() {
 let app = XCUIApplication()
 measure(metrics: [XCTClockMetric(),
 XCTMemoryMetric(application: app),
 XCTCPUMetric(application: app)]) {
 app.buttons["Apply Effect"].tap()
 app.dialogs["alert"].buttons["OK"].tap()
 }
}

// This test measures time, memory, and CPU impact

func testPhotoUploadPerformance() {
 let app = XCUIApplication()
 measure(metrics: [XCTClockMetric(),
 XCTMemoryMetric(application: app),
 XCTCPUMetric(application: app)]) {
 app.buttons["Apply Effect"].tap()
 app.dialogs["alert"].buttons["OK"].tap()
 }
}

// This test measures your Application's Launch Time

func testApplicationLaunchTime() {
 measure(metrics: [XCTOSSignpostMetric.applicationLaunch]) {
 XCUIApplication().launch()
 }
}

•Demo
•XCTest Metrics

XCTest Metrics Demo Takeaway

XCTest Metrics Demo Takeaway

CPU, memory, storage, clock and OSSignpost

XCTest Metrics Demo Takeaway

CPU, memory, storage, clock and OSSignpost

Custom metrics

XCTest Metrics Demo Takeaway

CPU, memory, storage, clock and OSSignpost

Custom metrics

A/B testing

XCTest Metrics Demo Takeaway

CPU, memory, storage, clock and OSSignpost

Custom metrics

A/B testing

Daily dev and continuous integration

Ashish Patro, Software Engineer

•Measuring App Impact in the Field

Benefits of Field Metrics

Benefits of Field Metrics

Leverage beta and public population

Benefits of Field Metrics

Leverage beta and public population

Uncover issues missed during on-desk testing

Benefits of Field Metrics

Leverage beta and public population

Uncover issues missed during on-desk testing

Compare metrics with previous app versions

Benefits of Field Metrics

Leverage beta and public population

Uncover issues missed during on-desk testing

Compare metrics with previous app versions

Impact of new features and A/B testing

Introducing MetricKit
NEW

Introducing MetricKit

Framework for collecting battery + performance metrics

NEW

Introducing MetricKit

Framework for collecting battery + performance metrics

Ability to collect metrics around your critical code sections

NEW

Introducing MetricKit

Framework for collecting battery + performance metrics

Ability to collect metrics around your critical code sections

Data aggregation designed to protect user privacy

NEW

Introducing MetricKit

Framework for collecting battery + performance metrics

Ability to collect metrics around your critical code sections

Data aggregation designed to protect user privacy

Easy to adopt

NEW

// Adopting MetricKit to receive metrics
import MetricKit

// 1. Conform to MXMetricManagerSubscriber protocol
class MySubscriber: NSObject, MXMetricManagerSubscriber {

 var metricManager: MXMetricManager?
 override init() {
 super.init()
 // 2. Initialize MetricManager
 metricManager = MXMetricManager.shared

 // 3. Subscribe for metrics
 metricManager?.add(self)
 }

 deinit {
 metricManager?.remove(self)
 }

// Adopting MetricKit to receive metrics
import MetricKit

// 1. Conform to MXMetricManagerSubscriber protocol
class MySubscriber: NSObject, MXMetricManagerSubscriber {

 var metricManager: MXMetricManager?
 override init() {
 super.init()
 // 2. Initialize MetricManager
 metricManager = MXMetricManager.shared

 // 3. Subscribe for metrics
 metricManager?.add(self)
 }

 deinit {
 metricManager?.remove(self)
 }

// Adopting MetricKit to receive metrics
import MetricKit

// 1. Conform to MXMetricManagerSubscriber protocol
class MySubscriber: NSObject, MXMetricManagerSubscriber {

 var metricManager: MXMetricManager?
 override init() {
 super.init()
 // 2. Initialize MetricManager
 metricManager = MXMetricManager.shared

 // 3. Subscribe for metrics
 metricManager?.add(self)
 }

 deinit {
 metricManager?.remove(self)
 }

// Adopting MetricKit to receive metrics

// 4. Implement delegate method
 func didReceive(_ payload: [MXMetricPayload]) {
 for metricPayload in payload {
 // 5. Consume metric payloads
 ……
 }
 }

// Adopting MetricKit to receive metrics

// 4. Implement delegate method
 func didReceive(_ payload: [MXMetricPayload]) {
 for metricPayload in payload {
 // 5. Consume metric payloads
 ……
 }
 }

Receiving Aggregate Metrics

☀ 🌙 24 hrs.0 hrs.

Receiving Aggregate Metrics

☀ 🌙

App

24 hrs.0 hrs.

Receiving Aggregate Metrics

☀ 🌙

App App

24 hrs.0 hrs.

Receiving Aggregate Metrics

☀ 🌙

App App App

24 hrs.0 hrs.

Receiving Aggregate Metrics

App App App

Daily aggregated metrics
(24 hr. intervals)

☀ 🌙 24 hrs.0 hrs.

Measuring critical code sections

Metrics for Critical Code Sections

Apply Effects

Take Photo

Upload Photo

☀ 🌙 24 hrs.0 hrs.

Metrics for Critical Code Sections

Apply Effects

Take Photo

Upload Photo

☀ 🌙 24 hrs.0 hrs.

Metrics for Critical Code Sections

Apply Effects

Take Photo

Save Photo

☀ 🌙 24 hrs.0 hrs.

Metrics for Critical Code Sections

Apply Effects

Take Photo

Save Photo

☀ 🌙 24 hrs.0 hrs.

Metrics for Critical Code Sections

√

Apply Effects

Take Photo

Save Photo

☀ 🌙 24 hrs.0 hrs.

Daily metrics per critical section

Metrics for Critical Code Sections

Apply Effects

Take Photo

Save Photo

☀ 🌙 24 hrs.0 hrs.

Daily metrics per critical section

Metrics for Critical Code Sections

☀ 🌙 24 hrs.0 hrs.

Apply Effects

Take Photo

Save Photo

Daily metrics per critical section

Introducing MetricKit’s mxSignposts
NEW

Introducing MetricKit’s mxSignposts

Signpost-style API available directly in MetricKit

NEW

Introducing MetricKit’s mxSignposts

Signpost-style API available directly in MetricKit

Collect metrics around your critical code sections

NEW

// Example: Collect metrics for critical code sections using mxSignposts
// Each mxSignpost (build over os_signposts) snapshots CPU time, memory and logical Writes
// Currently, custom metadata isn’t supported with mxSignposts

// 1. Create log handle using MetricKit’s makeLogHandle method
let photosLogHandle : OSLog = MXMetricManager.makeLogHandle(category: "Photos")

// 2. Drop mxSignpost around critical code sections
mxSignpost(.begin, log: photosLogHandle, name: "SavePhoto")

SavePhoto() // Application code

mxSignpost(.end, log: photosLogHandle, name: "SavePhoto")

// Example: Collect metrics for critical code sections using mxSignposts
// Each mxSignpost (build over os_signposts) snapshots CPU time, memory and logical Writes
// Currently, custom metadata isn’t supported with mxSignposts

// 1. Create log handle using MetricKit’s makeLogHandle method
let photosLogHandle : OSLog = MXMetricManager.makeLogHandle(category: "Photos")

// 2. Drop mxSignpost around critical code sections
mxSignpost(.begin, log: photosLogHandle, name: "SavePhoto")

SavePhoto() // Application code

mxSignpost(.end, log: photosLogHandle, name: "SavePhoto")

// Example: Collect metrics for critical code sections using mxSignposts
// Each mxSignpost (build over os_signposts) snapshots CPU time, memory and logical Writes
// Currently, custom metadata isn’t supported with mxSignposts

// 1. Create log handle using MetricKit’s makeLogHandle method
let photosLogHandle : OSLog = MXMetricManager.makeLogHandle(category: "Photos")

// 2. Drop mxSignpost around critical code sections
mxSignpost(.begin, log: photosLogHandle, name: "SavePhoto")

SavePhoto() // Application code

mxSignpost(.end, log: photosLogHandle, name: "SavePhoto")

// Example: Collect metrics for critical code sections using mxSignposts
// Each mxSignpost (build over os_signposts) snapshots CPU time, memory and logical Writes
// Currently, custom metadata isn’t supported with mxSignposts

// 1. Create log handle using MetricKit’s makeLogHandle method
let photosLogHandle : OSLog = MXMetricManager.makeLogHandle(category: "Photos")

// 2. Drop mxSignpost around critical code sections
mxSignpost(.begin, log: photosLogHandle, name: "SavePhoto")

SavePhoto() // Application code

mxSignpost(.end, log: photosLogHandle, name: "SavePhoto")

•Demo
•Adopting MetricKit

Example Scenario — Beta Testing Across Few Users

Taking a road trip with our Awesome Photo App!

Receiving Data from Field!
MetricKit summary from one beta user

Receiving Data from Field!
MetricKit summary from one beta user

Received metrics after 24 hrs.

Payload uploaded to server by application

Receiving Data from Field!
MetricKit summary from one beta user

Received metrics after 24 hrs.

Payload uploaded to server by application

**** 24 Hour Metric Summary ****

Application Build Version: 8

Device Type: iPhone11,2

Os Version: iPhone OS 13.0 (17A492)

Region Format: US

Application Resume Time Histogram

0 ms to 10 ms: 2

11 ms to 20 ms: 1

Launch Time (Time To First Draw) Histogram

151 ms to 160 ms: 1

171 ms to 180 ms: 1

191 ms to 200 ms: 1

201 ms to 210 ms: 2

241 ms to 250 ms: 1

261 ms to 270 ms: 1

381 ms to 390 ms: 1

2611 ms to 2620 ms: 1

Application Hang Histogram

331 ms to 340 ms: 1

681 ms to 690 ms: 10

691 ms to 700 ms: 13

5111 ms to 5120 ms: 4

5131 ms to 5140 ms: 1

Foreground Time	 	 	 : 739 s

Background Time	 	 	 : 23 s

 - Background Audio Time	 : 0 s

 - Background Location Time : 0 s

Overall CPU Time: 78 s

Overall GPU Time: 0 s

Overall Location Usage (Ordered by power impact)

- Best Accuracy For Navigation Time	 : 0 s

- Best Accuracy Time	 	 	 	 : 714 s

- Nearest Ten Meters Accuracy Time	 : 0 s

- Hundred Meters Accuracy Time	 	 : 0 s

- Kilometers Accuracy Time	 	 	 : 0 s

- Three Kilometer Accuracy Time	 	 : 0 s

Receiving Data from Field!
MetricKit summary from one beta user

Let’s identify some hotspots now!
**** 24 Hour Metric Summary ****

Application Build Version: 8

Device Type: iPhone11,2

Os Version: iPhone OS 13.0 (17A492)

Region Format: US

Application Resume Time Histogram

0 ms to 10 ms: 2

11 ms to 20 ms: 1

Launch Time (Time To First Draw) Histogram

151 ms to 160 ms: 1

171 ms to 180 ms: 1

191 ms to 200 ms: 1

201 ms to 210 ms: 2

241 ms to 250 ms: 1

261 ms to 270 ms: 1

381 ms to 390 ms: 1

2611 ms to 2620 ms: 1

Application Hang Histogram

331 ms to 340 ms: 1

681 ms to 690 ms: 10

691 ms to 700 ms: 13

5111 ms to 5120 ms: 4

5131 ms to 5140 ms: 1

Foreground Time	 	 	 : 739 s

Background Time	 	 	 : 23 s

 - Background Audio Time	 : 0 s

 - Background Location Time : 0 s

Overall CPU Time: 78 s

Overall GPU Time: 0 s

Overall Location Usage (Ordered by power impact)

- Best Accuracy For Navigation Time	 : 0 s

- Best Accuracy Time	 	 	 	 : 714 s

- Nearest Ten Meters Accuracy Time	 : 0 s

- Hundred Meters Accuracy Time	 	 : 0 s

- Kilometers Accuracy Time	 	 	 : 0 s

- Three Kilometer Accuracy Time	 	 : 0 s

Receiving Data from Field!
MetricKit summary from one beta user

**** 24 Hour Metric Summary ****

Application Build Version: 8

Device Type: iPhone11,2

Os Version: iPhone OS 13.0 (17A492)

Region Format: US

Application Resume Time Histogram

0 ms to 10 ms: 2

11 ms to 20 ms: 1

Launch Time (Time To First Draw) Histogram

151 ms to 160 ms: 1

171 ms to 180 ms: 1

191 ms to 200 ms: 1

201 ms to 210 ms: 2

241 ms to 250 ms: 1

261 ms to 270 ms: 1

381 ms to 390 ms: 1

2611 ms to 2620 ms: 1

Application Hang Histogram

331 ms to 340 ms: 1

681 ms to 690 ms: 10

691 ms to 700 ms: 13

5111 ms to 5120 ms: 4

5131 ms to 5140 ms: 1

Foreground Time	 	 	 : 739 s

Background Time	 	 	 : 23 s

 - Background Audio Time	 : 0 s

 - Background Location Time : 0 s

Overall CPU Time: 78 s

Overall GPU Time: 0 s

Overall Location Usage (Ordered by power impact)

- Best Accuracy For Navigation Time	 : 0 s

- Best Accuracy Time	 	 	 	 : 714 s

- Nearest Ten Meters Accuracy Time	 : 0 s

- Hundred Meters Accuracy Time	 	 : 0 s

- Kilometers Accuracy Time	 	 	 : 0 s

- Three Kilometer Accuracy Time	 	 : 0 s

Foreground Time : 739 s
Background Time : 23 s
 - Background Audio Time : 0 s
 - Background Location Time : 0 s

Overall Location Usage (Ordered by battery impact)
- Best Accuracy For Navigation Time : 0 s
- Best Accuracy Time : 714 s
- Nearest Ten Meters Accuracy Time : 0 s
- Hundred Meters Accuracy Time : 0 s
- Kilometers Accuracy Time : 0 s
- Three Kilometer Accuracy Time : 0 s

Receiving Data from Field!
MetricKit summary from one beta user

Left location on!

High accuracy location  
drains more battery

**** 24 Hour Metric Summary ****

Application Build Version: 8

Device Type: iPhone11,2

Os Version: iPhone OS 13.0 (17A492)

Region Format: US

Application Resume Time Histogram

0 ms to 10 ms: 2

11 ms to 20 ms: 1

Launch Time (Time To First Draw) Histogram

151 ms to 160 ms: 1

171 ms to 180 ms: 1

191 ms to 200 ms: 1

201 ms to 210 ms: 2

241 ms to 250 ms: 1

261 ms to 270 ms: 1

381 ms to 390 ms: 1

2611 ms to 2620 ms: 1

Application Hang Histogram

331 ms to 340 ms: 1

681 ms to 690 ms: 10

691 ms to 700 ms: 13

5111 ms to 5120 ms: 4

5131 ms to 5140 ms: 1

Foreground Time	 	 	 : 739 s

Background Time	 	 	 : 23 s

 - Background Audio Time	 : 0 s

 - Background Location Time : 0 s

Overall CPU Time: 78 s

Overall GPU Time: 0 s

Overall Location Usage (Ordered by power impact)

- Best Accuracy For Navigation Time	 : 0 s

- Best Accuracy Time	 	 	 	 : 714 s

- Nearest Ten Meters Accuracy Time	 : 0 s

- Hundred Meters Accuracy Time	 	 : 0 s

- Kilometers Accuracy Time	 	 	 : 0 s

- Three Kilometer Accuracy Time	 	 : 0 s

Foreground Time : 739 s
Background Time : 23 s
 - Background Audio Time : 0 s
 - Background Location Time : 0 s

Overall Location Usage (Ordered by battery impact)
- Best Accuracy For Navigation Time : 0 s
- Best Accuracy Time : 714 s
- Nearest Ten Meters Accuracy Time : 0 s
- Hundred Meters Accuracy Time : 0 s
- Kilometers Accuracy Time : 0 s
- Three Kilometer Accuracy Time : 0 s

Receiving Data from Field!
MetricKit summary from one beta user

**** 24 Hour Metric Summary ****

Application Build Version: 8

Device Type: iPhone11,2

Os Version: iPhone OS 13.0 (17A492)

Region Format: US

Application Resume Time Histogram

0 ms to 10 ms: 2

11 ms to 20 ms: 1

Launch Time (Time To First Draw) Histogram

151 ms to 160 ms: 1

171 ms to 180 ms: 1

191 ms to 200 ms: 1

201 ms to 210 ms: 2

241 ms to 250 ms: 1

261 ms to 270 ms: 1

381 ms to 390 ms: 1

2611 ms to 2620 ms: 1

Application Hang Histogram

331 ms to 340 ms: 1

681 ms to 690 ms: 10

691 ms to 700 ms: 13

5111 ms to 5120 ms: 4

5131 ms to 5140 ms: 1

Foreground Time	 	 	 : 739 s

Background Time	 	 	 : 23 s

 - Background Audio Time	 : 0 s

 - Background Location Time : 0 s

Overall CPU Time: 78 s

Overall GPU Time: 0 s

Overall Location Usage (Ordered by power impact)

- Best Accuracy For Navigation Time	 : 0 s

- Best Accuracy Time	 	 	 	 : 714 s

- Nearest Ten Meters Accuracy Time	 : 0 s

- Hundred Meters Accuracy Time	 	 : 0 s

- Kilometers Accuracy Time	 	 	 : 0 s

- Three Kilometer Accuracy Time	 	 : 0 s

Application Hang Histogram
331 ms to 340 ms: 1
681 ms to 690 ms: 10
691 ms to 700 ms: 13
5111 ms to 5120 ms: 4
5131 ms to 5140 ms: 1

Receiving Data from Field!
MetricKit summary from one beta user

> 5 second hang durations!

Degrades user experience

**** 24 Hour Metric Summary ****

Application Build Version: 8

Device Type: iPhone11,2

Os Version: iPhone OS 13.0 (17A492)

Region Format: US

Application Resume Time Histogram

0 ms to 10 ms: 2

11 ms to 20 ms: 1

Launch Time (Time To First Draw) Histogram

151 ms to 160 ms: 1

171 ms to 180 ms: 1

191 ms to 200 ms: 1

201 ms to 210 ms: 2

241 ms to 250 ms: 1

261 ms to 270 ms: 1

381 ms to 390 ms: 1

2611 ms to 2620 ms: 1

Application Hang Histogram

331 ms to 340 ms: 1

681 ms to 690 ms: 10

691 ms to 700 ms: 13

5111 ms to 5120 ms: 4

5131 ms to 5140 ms: 1

Foreground Time	 	 	 : 739 s

Background Time	 	 	 : 23 s

 - Background Audio Time	 : 0 s

 - Background Location Time : 0 s

Overall CPU Time: 78 s

Overall GPU Time: 0 s

Overall Location Usage (Ordered by power impact)

- Best Accuracy For Navigation Time	 : 0 s

- Best Accuracy Time	 	 	 	 : 714 s

- Nearest Ten Meters Accuracy Time	 : 0 s

- Hundred Meters Accuracy Time	 	 : 0 s

- Kilometers Accuracy Time	 	 	 : 0 s

- Three Kilometer Accuracy Time	 	 : 0 s

Application Hang Histogram
331 ms to 340 ms: 1
681 ms to 690 ms: 10
691 ms to 700 ms: 13
5111 ms to 5120 ms: 4
5131 ms to 5140 ms: 1

Receiving Data from Field!
MetricKit summary from one beta user

Let’s dig deeper into critical code sections

Metrics summarized from mxSignposts

(CPU time, Memory, Logical writes, Durations)

**** 24 Hour Metric Summary ****

Application Build Version: 8

Device Type: iPhone11,2

Os Version: iPhone OS 13.0 (17A492)

Region Format: US

Application Resume Time Histogram

0 ms to 10 ms: 2

11 ms to 20 ms: 1

Launch Time (Time To First Draw) Histogram

151 ms to 160 ms: 1

171 ms to 180 ms: 1

191 ms to 200 ms: 1

201 ms to 210 ms: 2

241 ms to 250 ms: 1

261 ms to 270 ms: 1

381 ms to 390 ms: 1

2611 ms to 2620 ms: 1

Application Hang Histogram

331 ms to 340 ms: 1

681 ms to 690 ms: 10

691 ms to 700 ms: 13

5111 ms to 5120 ms: 4

5131 ms to 5140 ms: 1

Foreground Time	 	 	 : 739 s

Background Time	 	 	 : 23 s

 - Background Audio Time	 : 0 s

 - Background Location Time : 0 s

Overall CPU Time: 78 s

Overall GPU Time: 0 s

Overall Location Usage (Ordered by power impact)

- Best Accuracy For Navigation Time	 : 0 s

- Best Accuracy Time	 	 	 	 : 714 s

- Nearest Ten Meters Accuracy Time	 : 0 s

- Hundred Meters Accuracy Time	 	 : 0 s

- Kilometers Accuracy Time	 	 	 : 0 s

- Three Kilometer Accuracy Time	 	 : 0 s

Receiving Data from Field!
MetricKit summary from one beta user

Let’s dig deeper into critical code sections

Metrics summarized from mxSignposts

(CPU time, Memory, Logical writes, Durations)

**** Summary for mxSignpost intervals ****
Category Name Count CummulativeCPUTime CummulativeLogicalWrites MaxDurationBucket
ImageProcessing LoadPhoto 30 1 s 0 kB 100 ms
ImageProcessing ApplyEffect 52 42 s 140 kB 1300 ms
ImageProcessing TakePhoto 20 1 s 0 kB 100 ms
ImageProcessing SavePhoto 25 3 s 34036 kB 200 ms
NetworkActivity UploadPhoto 6 10 s 0 kB 14400 ms

**** 24 Hour Metric Summary ****

Application Build Version: 8

Device Type: iPhone11,2

Os Version: iPhone OS 13.0 (17A492)

Region Format: US

Application Resume Time Histogram

0 ms to 10 ms: 2

11 ms to 20 ms: 1

Launch Time (Time To First Draw) Histogram

151 ms to 160 ms: 1

171 ms to 180 ms: 1

191 ms to 200 ms: 1

201 ms to 210 ms: 2

241 ms to 250 ms: 1

261 ms to 270 ms: 1

381 ms to 390 ms: 1

2611 ms to 2620 ms: 1

Application Hang Histogram

331 ms to 340 ms: 1

681 ms to 690 ms: 10

691 ms to 700 ms: 13

5111 ms to 5120 ms: 4

5131 ms to 5140 ms: 1

Foreground Time	 	 	 : 739 s

Background Time	 	 	 : 23 s

 - Background Audio Time	 : 0 s

 - Background Location Time : 0 s

Overall CPU Time: 78 s

Overall GPU Time: 0 s

Overall Location Usage (Ordered by power impact)

- Best Accuracy For Navigation Time	 : 0 s

- Best Accuracy Time	 	 	 	 : 714 s

- Nearest Ten Meters Accuracy Time	 : 0 s

- Hundred Meters Accuracy Time	 	 : 0 s

- Kilometers Accuracy Time	 	 	 : 0 s

- Three Kilometer Accuracy Time	 	 : 0 s

Receiving Data from Field!
MetricKit summary from one beta user

Let’s dig deeper into critical code sections

Metrics summarized from mxSignposts

(CPU time, Memory, Logical writes, Durations)

**** 24 Hour Metric Summary ****

Application Build Version: 8

Device Type: iPhone11,2

Os Version: iPhone OS 13.0 (17A492)

Region Format: US

Application Resume Time Histogram

0 ms to 10 ms: 2

11 ms to 20 ms: 1

Launch Time (Time To First Draw) Histogram

151 ms to 160 ms: 1

171 ms to 180 ms: 1

191 ms to 200 ms: 1

201 ms to 210 ms: 2

241 ms to 250 ms: 1

261 ms to 270 ms: 1

381 ms to 390 ms: 1

2611 ms to 2620 ms: 1

Application Hang Histogram

331 ms to 340 ms: 1

681 ms to 690 ms: 10

691 ms to 700 ms: 13

5111 ms to 5120 ms: 4

5131 ms to 5140 ms: 1

Foreground Time	 	 	 : 739 s

Background Time	 	 	 : 23 s

 - Background Audio Time	 : 0 s

 - Background Location Time : 0 s

Overall CPU Time: 78 s

Overall GPU Time: 0 s

Overall Location Usage (Ordered by power impact)

- Best Accuracy For Navigation Time	 : 0 s

- Best Accuracy Time	 	 	 	 : 714 s

- Nearest Ten Meters Accuracy Time	 : 0 s

- Hundred Meters Accuracy Time	 	 : 0 s

- Kilometers Accuracy Time	 	 	 : 0 s

- Three Kilometer Accuracy Time	 	 : 0 s

**** Summary for mxSignpost intervals ****
Category Name Count CummulativeCPUTime CummulativeLogicalWrites MaxDurationBucket
ImageProcessing LoadPhoto 30 1 s 0 kB 100 ms
ImageProcessing ApplyEffect 52 42 s 140 kB 1300 ms
ImageProcessing TakePhoto 20 1 s 0 kB 100 ms
ImageProcessing SavePhoto 25 3 s 34036 kB 200 ms
NetworkActivity UploadPhoto 6 10 s 0 kB 14400 ms

Overall CPU Time: 78 s

Overall GPU Time: 0 s

Receiving Data from Field!
MetricKit summary from one beta user

> 50% CPU used by “ApplyEffect” feature

Optimizing feature can reduce battery usage

**** 24 Hour Metric Summary ****

Application Build Version: 8

Device Type: iPhone11,2

Os Version: iPhone OS 13.0 (17A492)

Region Format: US

Application Resume Time Histogram

0 ms to 10 ms: 2

11 ms to 20 ms: 1

Launch Time (Time To First Draw) Histogram

151 ms to 160 ms: 1

171 ms to 180 ms: 1

191 ms to 200 ms: 1

201 ms to 210 ms: 2

241 ms to 250 ms: 1

261 ms to 270 ms: 1

381 ms to 390 ms: 1

2611 ms to 2620 ms: 1

Application Hang Histogram

331 ms to 340 ms: 1

681 ms to 690 ms: 10

691 ms to 700 ms: 13

5111 ms to 5120 ms: 4

5131 ms to 5140 ms: 1

Foreground Time	 	 	 : 739 s

Background Time	 	 	 : 23 s

 - Background Audio Time	 : 0 s

 - Background Location Time : 0 s

Overall CPU Time: 78 s

Overall GPU Time: 0 s

Overall Location Usage (Ordered by power impact)

- Best Accuracy For Navigation Time	 : 0 s

- Best Accuracy Time	 	 	 	 : 714 s

- Nearest Ten Meters Accuracy Time	 : 0 s

- Hundred Meters Accuracy Time	 	 : 0 s

- Kilometers Accuracy Time	 	 	 : 0 s

- Three Kilometer Accuracy Time	 	 : 0 s

**** Summary for mxSignpost intervals ****
Category Name Count CummulativeCPUTime CummulativeLogicalWrites MaxDurationBucket
ImageProcessing LoadPhoto 30 1 s 0 kB 100 ms
ImageProcessing ApplyEffect 52 42 s 140 kB 1300 ms
ImageProcessing TakePhoto 20 1 s 0 kB 100 ms
ImageProcessing SavePhoto 25 3 s 34036 kB 200 ms
NetworkActivity UploadPhoto 6 10 s 0 kB 14400 ms

Overall CPU Time: 78 s

Overall GPU Time: 0 s

MetricKit Demo Takeaway

MetricKit Demo Takeaway

Ability to collect field battery + performance metrics yourself

MetricKit Demo Takeaway

Ability to collect field battery + performance metrics yourself

Use MetricKit to identify hotspots early from field users

MetricKit Demo Takeaway

Ability to collect field battery + performance metrics yourself

Use MetricKit to identify hotspots early from field users

Aggregate MetricKit data from multiple users

Anshul Dawra, Software Engineer

•Introducing Xcode Metrics Organizer
•

NEW

Xcode Metrics Organizer

Out-of-box battery and performance app analytics

No changes required to app

Data aggregation designed to protect user privacy

How It Works

How It Works
No app changes required to gather metrics

•Demo
•Xcode Metrics Organizer

Xcode Metrics Organizer Demo Takeaway

Out-of-box tool to view battery and performance analytics

Detect regressions across app versions

Available in Xcode 11

•Tools overview
•Metrics overview
•Deep dives and Demos
•Summary

BetaDevelopment 
and Testing

Public Release

XCTest Metrics
MetricKit

Xcode Metrics Organizer

BetaDevelopment 
and Testing

Public Release

XCTest Metrics
MetricKit

Xcode Metrics Organizer

BetaDevelopment 
and Testing

Public Release

Summary

Summary

Three new tools this year
• XCTest Metrics
• MetricKit
• Xcode Metrics Organizer

Summary

Three new tools this year
• XCTest Metrics
• MetricKit
• Xcode Metrics Organizer

Tools can quantify the battery and performance impact of your app

Summary

Three new tools this year
• XCTest Metrics
• MetricKit
• Xcode Metrics Organizer

Tools can quantify the battery and performance impact of your app

Metrics can help you make better decisions about your app

More Information
developer.apple.com/wwdc19/417

Optimizing App Launch Friday, 4:20

Performance, Power, Crashes, and Debugging Lab Friday, 3:00

