
#WWDC18

© 2018 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

•Create Great Customer Experiences
Using Wallet and Apple Pay
• Session 720

Ben Chester, Apple Pay and Wallet Software Engineer
Katie Calabro, Apple Pay and Wallet Software Engineer

•Updates from the last year

•Updates from the last year
•Great experiences with Apple Pay

•Updates from the last year
•Great experiences with Apple Pay
•Getting the most from passes

•Updates from the last year
•Great experiences with Apple Pay
•Getting the most from passes
•Digital to physical commerce

Apple Pay Cash

Makes it easy to pay and get paid from friends
and family using iMessage

Pay in-store, within apps, and on the web

Available in the U.S.

To process Apple Pay Cash payments, ensure
you accept Discover debit

Inline Setup

For users with no cards, set up one and return
to purchase in one step

Always show the Apple Pay button if the device
supports it

Use the .setup button type if the user has zero
cards to make it even clearer

Inline Setup

For users with no cards, set up one and return
to purchase in one step

Always show the Apple Pay button if the device
supports it

Use the .setup button type if the user has zero
cards to make it even clearer

Inline Setup

Apple Pay setup is presented inside your app

No additional work required

Inline Setup

Returns the user to the purchase immediately

Automatic card activation via SMS

Faster than manual entry

Error Handling

Control over nonfatal errors in the  
Apple Pay Sheet

Provide your own custom error messages

Resolve issues for higher conversion

Error Handling Tips

Important to expect fuzzy data

User has one set of data in Apple Pay shared across many apps and websites

Forcing the user to conform to your business logic actually increases friction

Instead, accept a range of inputs, i.e. Zip and Zip + 4

Infer what data you can from other fields, such as city and state from zip

ChinaAustralia Canada

New Zealand Russia Spain Switzerland Taiwan

Hong Kong

U.K.

France Ireland

Singapore

Italy

U.S.

Japan

ChinaAustralia Canada

New Zealand Russia Spain Switzerland Taiwan

Hong Kong

U.K.

France Ireland

Singapore

Italy

U.S.

Japan

Ukraine Denmark Sweden Brazil UAEFinland

China

•Great Experiences with Apple Pay

•Easier
•Faster
•Clearer

•Easier with Upstreaming•Easier
•Faster
•Clearer

•Faster with Defaulting

•Easier with Upstreaming•Easier
•Faster
•Clearer

•Clearer with Streamlining

•Faster with Defaulting

•Easier with Upstreaming•Easier
•Faster
•Clearer

Apple Pay Button

Localized in all device languages

Available in a number of styles and colors

Scalable for all supported devices

You’ll get our future updates without any work

Available in the SDK from iOS 8.3 and WebKit from iOS 10.1/macOS 10.12.1

let button = PKPaymentButton.init(paymentButtonType: .book, paymentButtonStyle: .white)

Book with Apple Pay
NEW

Use when booking a hotel or with a ridesharing service

let button = PKPaymentButton.init(paymentButtonType: .subscribe, paymentButtonStyle: .white)

Subscribe with Apple Pay
NEW

Use for subscription-based purchases

let button = PKPaymentButton.init(paymentButtonType: .checkout, paymentButtonStyle: .white)

Checkout with Apple Pay
NEW

Use if you have multiple references to checkout on the same page

Makes it clear to the user that checkout button performs Apple Pay

let button = PKPaymentButton.init(paymentButtonType: .checkout, paymentButtonStyle: .white)
button.cornerRadius = 0

Corner Radius
NEW

Modify this to match the style of your existing app or website

Will fallback to use the default rounded corner on unsupported versions

Apple Pay Button

New types and corner radius are available in iOS 12 today

Coming to WebKit in a future release

Fallback to using other types on unsupported versions

Guest Checkout

Design for guest checkout as the first experience

Blocking first-time purchase increases friction leading to abandonment

Account creation should be desired by the user, not enforced

Create accounts post-purchase using data from Apple Pay

Defaulting

Your customers will look for and expect Apple Pay

Make purchasing faster by setting Apple Pay as the default option

Apple Pay has the most up-to-date customer information

Use inline setup if the user has no cards

Streamlining

Prefer customer information from Apple Pay

Users have contact, shipping, and billing information already set up

Request only relevant fields

Additional fields can lead to higher abandonment

Collect other information before, checkout begins such as the number of items

NEW

NEW

NEW

NEW

NEW

NEW

Zero Total Support

Available in iOS 12 today

Coming to WebKit in a future release

Make sure to fallback to existing behavior on older versions

New Supported Networks

PKPaymentNetworkElectron API_AVAILABLE(ios(12.0), watchos(5.0));

PKPaymentNetworkMaestro API_AVAILABLE(ios(12.0), watchos(5.0));

PKPaymentNetworkVPay API_AVAILABLE(ios(12.0), watchos(5.0));

Support as many payment networks as possible for the best user experience

Available in iOS 12 today and WebKit in a future release

NEW

W3C Payment Request API
and

Apple Pay JS API

Apple Pay JS API or Payment Request API

Apple Pay JS API Payment Request API

Cross browser solution

Error handling with custom error messaging

 Automatic selection for affiliated and cobranded cards

 Adjust prices based on user selection of affiliated cards

Phonetic name collection

Supported from iOS 10
macOS 10.12

iOS 11.3
Safari 11.1 on macOS 10.12

More Information
https://applepaydemo.apple.com

•Getting the Most from Passes

Why Use Passes?

Easy to use contactlessly or with a barcode

Synced across all devices and backed with iCloud

Intelligently shown on lock screen and in search for quick access

Continue the seamless Apple Pay experience into the physical world

•Adding passes to Wallet

•Adding passes to Wallet
•Making passes look great

•Adding passes to Wallet
•Making passes look great
•Rich pass content

•Adding passes to Wallet
•Making passes look great
•Rich pass content
•Contactless passes

Presents a simple alert to the user requesting to add or review

Less friction than presenting PKAddPassesViewController directly

Handle the review status in the callback

// PKPassLibrary

func addPasses(_ passes: [PKPass], withCompletionHandler completion:
((PKPassLibraryAddPassesStatus) -> Swift.Void)? = nil)

Automatically Adding Passes

Suggest adding passes that were created outside of your app

Add related passes to Wallet as a group

Make it easy for people to quickly add passes they do not have

Let people jump to their passes in Wallet from your app

Adding Passes Best Practices

Designing Passes

Use pass fields to display relevant text

Use vibrant colors to make your pass stand out

Design a pass that looks great on all devices

Avoid reproducing existing physical passes

Don’t encode user information in the strip image

Passes on Apple Watch

Does not support the strip image

Thumbnail image is not displayed

Users cannot access the pass details

NEW

"auxiliaryFields": [
 {
 "label": "Date",
 "key": "Date",
 "value": “June 9, 2018”,
 “row”: 0
 },
 {
 "label": "Section",
 "key": "Section",
 "value": “10”,
 "row": 1
 }
]

Additional Row Support

“Row” can only be used in auxiliary fields in an event ticket type pass

Only values of 0 and 1 supported

Coming in a future seed

On older versions, “row” is ignored

Auxiliary fields are then displayed on one row up to the limit of fourth fields per row

Consider this when designing your passes

•Rich Pass Content

Relevancy

Add this functionality with the “locations”,
“relevantText”, and “relevantDate” pass  
JSON fields

Pass appears on lock screen at the right moment

Handles multiple relevant passes

Always add relevancy information and trust the
system to present as required

•Semantic Tags

NEW

{
 "key": "event",
 "label": “Apple Park”,
 "value": “Revenge Of The Passes”,
},
{
 "key": "runtime",
 "label": "RUNTIME",
 "value": “2:45",
},
{
 "key": "theater",
 "value": "F5",
 "label": "THEATRE",
}

{
 "key": "event",
 "label": “Apple Park”,
 "value": “Revenge Of The Passes”,
 "semantics": {
 "eventName": "Revenge Of The Passes: A Wallet Story”,
 "venueName": “Apple Park 1",
 "venuePhoneNumber": "+1(408)888-8888"
 }
}

{
 "semantics": {
 "eventType": "PKEventTypeMovie",
 "silenceRequested": true,
 "duration" : 7245
 }
}

Semantic Tags

Great way to add machine readable information to passes

70+ event and transit type tags supported

Supported semantic keys will be available in online documentation soon

Relevancy information works in combination with semantic tags

•Contactless Passes

Contactless Passes

Contactless and relevancy for lock screen access feels like magic

Requires an NFC Certificate to get started

 

Contact us for access: https://developer.apple.com/contact/passkit

Your readers must support the Apple Value added Services protocol

Contactless Passes

Contactless and relevancy for lock screen access feels like magic

Requires an NFC Certificate to get started

Katie Calabro, Apple Pay and Wallet Software Engineer

•Demo

•Digital to Physical Commerce

Certificates Expiry

If you’re a payment processor or merchant

Make sure to check your server-side certificate expiry dates in the developer portal

They are easy to renew

Renew before expiry to avoid disruption taking Apple Pay

More Information
https://developer.apple.com/wallet/

https://developer.apple.com/apple-pay/

Wallet, Apple Pay, and Core NFC Lab Technology Lab 1 Friday 10:00AM

