
#WWDC18

© 2018 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Josh Graessley, Networking
Tommy Pauly, Networking
Eric Kinnear, Networking

•Introducing Network.framework
•A modern alternative to sockets
• Session 715

•Modernizing transport APIs
•Making your first connections
•Optimizing data transfer
•Solving network mobility
•Getting involved

Josh Graessley, Networking

•Modernizing Transport APIs

Using sockets to write apps for
today’s Internet is hard.

Connection Establishment

Connection Establishment

NAT64

Proxies
VPN Configurations

Cellular Radio Bringup

Hostname Resolution

Bonjour Service Resolution
Dual-Stack Hosts

PAC Evaluation

Optimistic DNS

Data Transfer

Data Transfer

Reading Complete Headers

Sending Early Data

Writable Events

Low Water Marks
Datagram Batches

Backpressure

Transport Layer Security

Mobility

Mobility

Multipath TCP

Wi-Fi Assist

Wait for Reachability

Avoid Cellular Networks

Network Transitions
Trigger VPN

socket

getaddrinfo

SCNetworkReachability

SecureTransport

URLSession

Data
Task

Download
Task

Upload
Task

Stream
Task

URLSession

Data
Task

Download
Task

Upload
Task

Stream
Task

Network.framework

Connection Listener Path Monitor
socket

getaddrinfo

SCNetworkReachability

SecureTransport

URLSession

Data
Task

Download
Task

Upload
Task

Stream
Task

Network.framework

Connection Listener Path Monitor

Introducing Network.framework
NEW

Smart connection establishment

Optimized data transfer

Built-in security

Seamless mobility

Native Swift support

Tommy Pauly, Networking

•Making Your First Connections

Mail and
MessagingGaming Live Streaming

mail.example.comHostname:

993Port:

TLS/TCPProtocol:

Connection Setup

Mail and
Messaging

1. Perform DNS resolution with getaddrinfo()
2. Call socket() with the correct address family

3. Set socket options with setsockopt()

4. Call connect() to start TCP
5. Wait for a writable event

Connection Setup
Sockets

Mail and
Messaging

Connection Setup
Network.framework

1. Create a connection to an NWEndpoint  
and NWParameters

2. Call connection.start()

3. Wait for connection to move to the .ready
state

Mail and
Messaging

// Create an outbound connection
import Network
let connection = NWConnection(host: "mail.example.com", port: .imaps, using: .tls)

connection.stateUpdateHandler = { (newState) in
 switch(newState) {
 case .ready:
 // Handle connection established
 case .waiting(let error):
 // Handle connection waiting for network
 case .failed(let error):
 // Handle fatal connection error
 default:
 break
 }
}

connection.start(queue: myQueue)

Connection Lifecycle

Setup Ready

Waiting

Preparing Failed Cancelled

Connection Lifecycle

Setup Ready

Waiting

Preparing Failed Cancelled

Proxy Address

Smart Connection Establishment

Proxy

Direct

IPv6 Address

IPv4 Address

IPv6 Address

IPv4 Address

mail.example.com:993

// Limiting Connection Establishment

// Restrict connections based on interface types
parameters.prohibitedInterfaceTypes = [.cellular]

// Restrict connections based on address family
if let ipOptions = parameters.defaultProtocolStack.internetProtocol as? NWProtocolIP.Options {
 ipOptions.version = .v6
}

// Avoid proxies
parameters.preferNoProxies = true

Connection Lifecycle

Setup Ready

Waiting

Preparing Failed Cancelled

Connection Lifecycle

Setup Ready

Waiting

Preparing Failed Cancelled

Connection Lifecycle

Setup Ready

Waiting

Preparing Failed Cancelled

Connection Lifecycle

Setup Ready

Waiting

Preparing Failed Cancelled

Eric Kinnear, Networking

•Example
•Streaming Video

Live Streaming

Streaming Live Video with UDP

Streaming Live Video with UDP

Listener

UDP Packets

Video Frames

DisplayCamera

Video Frames

UDP Packets

Connection

Streaming Live Video with UDP

Listener

UDP Packets

Video Frames

DisplayCamera

Video Frames

UDP Packets

Connection

// UDP Bonjour listener

do {
 if let listener = try NWListener(parameters: .udp) {

 // Advertise a Bonjour service
 listener.service = NWListener.Service(type: “_camera._udp”)

 listener.newConnectionHandler = { (newConnection) in
 // Handle inbound connections
 newConnection.start(queue: myQueue)
 }

 listener.start(queue: myQueue)
 }
} catch {
 // Handle listener creation error
}

•Demo

Streaming Live Video with UDP

Streaming Live Video with UDP

Streaming Live Video with UDP

Tommy Pauly, Networking

•Optimizing Data Transfer

Send and Receive

// Send a single frame
func sendFrame(_ connection: NWConnection, frame: Data) {

 // The .contentProcessed completion provides sender-side back-pressure
 connection.send(content: frame, completion: .contentProcessed { (sendError) in

 if let sendError = sendError {
 // Handle error in sending

 } else {
 // Send has been processed, send the next frame
 let nextFrame = generateNextFrame()
 sendFrame(connection, frame: nextFrame)
 }
 })
}

// Hint that multiple datagrams should be sent as one batch
connection.batch {

 for datagram in datagramArray {
 connection.send(content: datagramArray, completion: .contentProcessed { (error) in
 // Handle error in sending
 })
 }
}

// Read one header from the connection
func readHeader(connection: NWConnection) {
 // Read exactly the length of the header
 let headerLength: Int = 10
 connection.receive(minimumIncompleteLength: headerLength, maximumLength: headerLength)
 { (content, contentContext, isComplete, error) in
 if let error = error {
 // Handle error in reading

 } else {
 // Parse out body length
 readBody(connection, bodyLength: bodyLength)
 }
 }
}

// Follow the same pattern as readHeader() to read exactly the body length
func readBody(_ connection: NWConnection, bodyLength: Int) { ... }

Advanced Options

Explicit Congestion Notification

ECN negotiation is enabled by default on TCP connections

Mark ECN flags per packet with UDP

let ipMetadata = NWProtocolIP.Metadata()
ipMetadata.ecn = .ect0

let context = NWConnection.ContentContext(identifier: "ECN", metadata: [ipMetadata])

connection.send(content: datagram, contentContext: context, completion: .contentProcessed{..})

Service Class
Interface queuing and Cisco Fastlane

Mark service class on parameters to apply to an entire connection

Mark service class per-packet for UDP

let ipMetadata = NWProtocolIP.Metadata()
ipMetadata.serviceClass = .signaling

let context = NWConnection.ContentContext(identifier: "Signaling", metadata: [ipMetadata])
connection.send(content: datagram, contentContext: context, completion: .contentProcessed{..})

let parameters = NWParameters.tls
parameters.serviceClass = .background

Fast Open Connections
Zero round trip data

Allowing fast open on a connection requires sending idempotent data

parameters.allowFastOpen = true
let connection = NWConnection(to: endpoint, using: parameters)

connection.send(content: initialData, completion: .idempotent)

connection.start(queue: myQueue)

Fast Open Connections
Zero round trip data

Allowing fast open on a connection requires sending idempotent data

parameters.allowFastOpen = true
let connection = NWConnection(to: endpoint, using: parameters)

connection.send(content: initialData, completion: .idempotent)

connection.start(queue: myQueue)

let tcpOptions = NWProtocolTCP.Options()
tcpOptions.enableFastOpen = true

TCP Fast Open may be manually enabled to run TLS over TFO

Allow Expired DNS Answers
Remove DNS round trip time

Optimistically try expired DNS answers

A DNS query for a new answer will run in parallel

parameters.expiredDNSBehavior = .allow
let connection = NWConnection(to: endpoint, using: parameters)

connection.start(queue: myQueue)

Optimizing Your App for Today’s Internet WWDC 2018

https://developer.apple.com/videos/play/wwdc2018/714/

User-Space Networking

User-Space Networking

Application

Session

Security

Transport

Interface Driver

Decryption

Kernel to user

IP Packet to TCP buffer

Socket

Legacy socket model

Application

Session

Security

Transport

Driver

Interface

Memory-mapped channel

Single
 networking

queue

Decryption

IP Packet to ring buffer

User-Space Networking
URLSession and Network.framework

•Demo
•UDP performance

Sockets
UDP

User-Space
UDP

~30% less overhead

•Solving Network Mobility

Starting Connections

.waiting state indicates lack of connectivity

Avoid checking reachability before starting a connection

Restrict interface types in NWParameters if necessary

Reacting to Network Transitions
Connection viability

Current Path

betterPathAvailable = false

isViable = true

Reacting to Network Transitions
Connection viability

Current Path

•Inform user about no connectivity
•Do not close connection

isViable = false

betterPathAvailable = false

Reacting to Network Transitions
Better path

Current Path

betterPathAvailable = false

isViable = true

Reacting to Network Transitions
Better path

Available Path

Current Path

•Attempt new connection
•Close original connection once  
new connection is readybetterPathAvailable = true

isViable = false

Reacting to Network Transitions
Better path

betterPathAvailable = false

isViable = true

Current Path

Reacting to Network Transitions
Better path

betterPathAvailable = true

isViable = true •Attempt to migrate to new connection
•Continue to use original connection
until a new connection is ready

Current Path

Available Path

// Handle connection viability
connection.viabilityUpdateHandler = { (isViable) in
 if (!isViable) {
 // Handle connection temporarily losing connectivity
 } else {
 // Handle connection return to connectivity
 }
}

// Handle better paths
connection.betterPathUpdateHandler = { (betterPathAvailable) in
 if (betterPathAvailable) {
 // Start a new connection if migration is possible
 } else {
 // Stop any attempts to migrate
 }
}

Multipath Connections
Achieving ideal mobility

Enable Multipath TCP with NWParameters.multipathServiceType
Also available in URLSession

Restricting interface types in NWParameters limits paths for Multipath TCP

Connection viability for Multipath TCP indicates the presence of active subflows

Advances in Networking, Part 1 WWDC 2017

https://developer.apple.com/videos/play/wwdc2017/707/

Watching Interface Changes
Monitor network state, not host reachability

Use NWPathMonitor to iterate the current available network interfaces

Updates notify network changes

Useful for updating UI or opening connections per-interface

Along with connection state .waiting, replaces SCNetworkReachability

Josh Graessley, Networking

•Getting Involved

Discouraged Practices

Network Kernel Extensions

FTP and File URLs for Proxy Automatic Configuration (PAC)

CFStreamCreatePairWithPeerSocketSignature
CFStreamCreatePairWithSocketToHost
CFStreamCreatePairWithSocket
CFStreamCreatePairWithSocketToCFHost
CFStreamCreatePairWithSocketToNetService
CFSocket

Discouraged APIs
CoreFoundation

+[NSStream getStreamsToHostWithName:port:inputStream:outputStream:]
+[NSStream getStreamsToHost:port:inputStream:outputStream:]
-[NSNetService getInputStream:outputStream:]
NSNetServiceListenForConnections
NSSocketPort

SCNetworkReachability

Discouraged APIs
Foundation and SCNetworkReachability

Preferred APIs

URLSession

Data
Task

Download
Task

Upload
Task

Stream
Task

Network.framework

Connection Listener Path Monitor

Next Steps

Adopt Network.framework

Optimize sending and receiving

Handle network mobility gracefully

Contact Developer Support with questions and enhancement requests

More Information
https://developer.apple.com/wwdc18/715

Networking Lab Technology Lab 1 Thursday 2:00PM

Networking Lab Technology Lab 2 Friday 9:00AM

https://developer.apple.com/wwdc18/715

