#WWDC18

Getting to Know
Swift Package Manager

Session 411

Rick Ballard, SwiftPM Release Manager
Boris Buegling, Developer Tools Engineer

© 2018 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Why a package manager for Swift?
How to use It

The design of SwiftPM

Evolution ideas

Open source process

Why a package manager for Swift?
How to use It

The design of SwiftPM

Evolution ideas

Open source process

A Cross-Platform Build System for Swift

A Cross-Platform Build System for Swift

Future
Platforms

Canonical Package Management Tool

Canonical Package Management Tool

Future
Platforms

Code Reuse Beyond the Core Libraries

Code Reuse Beyond the Core Libraries

@ Foundation @ Dispatch @ XCTest
@ stdlib

@ system

Take Full Advantage of the Power of Swift

Take Full Advantage of the Power of Swift

Part of Swift Open Source Project

r|‘] f ‘ \

e B I 8
-S.‘. i . l , £ o — _'1 '
18 4 L ¥ -

) EREER])
"I

Swift.org - Package Manager -

SERVER APIS worx erous) PaCkage Manager

COMPILER AND

FIERRETRR RRSAS The Swift Package Manager Is a tool for managing the distribution of Swift

PACKAGE MANAGER code. It's integrated with the Swift build system to automate the process of

Conceptual Overview downloading, compiling, and linking dependencies.

Example Usage

The Package Manager is included in Swift 3.0 and above.

Community Proposal

CORE LIBRARIES

REPL, DEBUGGER &

Conceptual Overview

nttps://swift.org/package-manager/

Included In Swift Toolchains

-
4
:
- - : - - -
. ' _
' ' .. -

Swift.org - Download Swift —+

Swift 4.2 Development

Swift 4.2 Snapshots are prebuilt binaries that are automatically created
from swift-4.2-branch branch. These snapshots are not official releases.
They have gone through automated unit testing, but they have not gone
through the full testing that is performed for official releases.

ABOUT SWIFT
BLOG

DOWNLOAD Download

Releases

Xcode
Snapshots | June 9, 2018
(Debugging Symbols)

Using Downloads

Ubuntu 16.10

June b 2018
GETTING STARTED (Signature) I

DOCUMENTATION

Ubuntu 16.04

/ T a i & + Bt

June 5, 2018

https://swift.org/download/

Included with Xcode

Why a package manager for Swift?
How to use It

The design of SwiftPM

Evolution ideas

Open source process

SwiftPM Commands

0 o #i demo — -bash — 53x16

$ swift build

$ swift run
$ swift test

$ swift packagel

Packages Use Git

Demo
Creating your first package

Anatomy of a Package

Anatomy of a Package

Dependencies

Anatomy of a Package

Targets

Dependencies

Anatomy of a Package

exec

Products

Targets

Dependencies

Dependencies

Dependencies

Dependencies

Dependencies

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(

name: "dealer",

products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),

I,

dependencies: [
.package(url: "git@github.com:apple/example—-package—-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),

.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"l]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(

name: "dealer",

products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),

I,

dependencies: [
.package(url: "git@®github.com:apple/example—-package—-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),

.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"l]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(

name: "dealer",

products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),

I,

dependencies: [
.package(url: "git@github.com:apple/example—-package—-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),

.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"l]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(

name: "dealer",

products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),

I,

dependencies: [
.package(url: "git@github.com:apple/example—-package—-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),

.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"l]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(

name: "dealer",

products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),

I,

dependencies: [
.package(url: "git@github.com:apple/example—-package—-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),

.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"l]),

Targets Depend on Other Targets and Products

Targets Depend on Other Targets and Products

Products

exec

Products

exec

Packages Provide Products

Packages Provide Products

Linkage:

Automatic

Static

Dynamic

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(
name: "dealer",
products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),
I,
dependencies: [
.package(url: "git@github.com:apple/example—-package-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),
.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(
name: "dealer",
products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),
I,
dependencies: [
.package(url: "git@github.com:apple/example—-package-deckofplayingcards", from: "3.0.0")
I,
targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),
.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(
name: "dealer",
products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),
I,
dependencies: [
.package(url: "git@github.com:apple/example—-package-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),
.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(
name: "dealer",
products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),
I,
dependencies: [
.package(url: "git@github.com:apple/example—-package-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),
.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(
name: "dealer",
products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),
I,
dependencies: [
.package(url: "git@github.com:apple/example—-package-deckofplayingcards", from: "3.0.0")
I,
targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),
.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(

name: "dealer",

products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),

I,

dependencies: [
.package(url: "git@github.com:apple/example—-package-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),

.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"l]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(

name: "dealer",

products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),

I,

dependencies: [
.package(url: "git@github.com:apple/example—-package-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),

.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"l]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(

name: "dealer",

products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),

I,

dependencies: [
.package(url: "git@github.com:apple/example—-package-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),

.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"l]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(

name: "dealer",

products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),

I,

dependencies: [
.package(url: "git@github.com:apple/example—-package-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),

.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"l]),

// swift-tools—-version:4.2

1mport PackageDescription

let package = Package(

name: "dealer",

products: [
.library(name: "libdealer", targets: ["libdealer"]),
.executable(name: "dealer", targets: ["dealer"]),

I,

dependencies: [
.package(url: "git@github.com:apple/example—-package-deckofplayingcards", from: "3.0.0")

I,

targets: [
.target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
.target(name: "dealer", dependencies: ["libdealer"]),

.testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"l]),

Demo
Adding dependencies

Why a package manager for Swift?
How to use It

The design of SwiftPM

Evolution ideas

Open source process

Following Swift's Philosophy

Safe
Fast

Expressive

Following Swift's Philosophy

Safe: Isolated build environment
Fast

Expressive

Following Swift's Philosophy

Safe: Isolated build environment

Fast: scalable to large dependency graphs

Expressive

Following Swift's Philosophy

Safe: isolated build environment
Fast: scalable to large dependency graphs

Expressive: Swift language manifest format

The Design of SwiftPM

Configuration

A |
Dependencies

| N
&

Workflow & Building
Features

Tools Evolution

The Design of SwiftPM

Configuration

Swift Language Manifest Format

Easy to understand

Follows Swift APl design guidelines

Supported by existing Swift tools

Prefer Declarative Syntax

// swift—-tools—-version:4.2 // swift—-tools—-version:4.2

1mport PackageDescription 1mport PackageDescription

let name = generateName() let package = Package(

let package = Package(name: "A",
name: name, targets: [
targets: [.target(
.target (name: "A",
name: name, dependencies: []),
dependencies: []), .testTarget (
.testTarget(name: "ATests",
name: "\(name)Tests'", dependencies: ["A"]),

dependencies: [.target(name: name)])]

1))

Specifying Package Source Files

B Sources
B dealer

main.swift

B libdealer

libdealer.swift

Convention versus Configuration

B Sources
products: [

. dealer .library(name: "libdealer",
targets: ["libdealer"]),

main.swift

targets: [

- libdealer .target(name: "libdealer",
dependencies: ["DeckOfPlayingCards"]),

libdealer.swift

Convention versus Configuration

9 Sources
products: |

- dealer .library(name: "libdealer",
targets: ["libdealer"]),

main.swift

targets: [

- libdealer .target(name: "libdealer",
dependencies: ["DeckOfPlayingCards"]),

libdealer.swift

Convention versus Configuration

B Sources
B dealer

B main.swift

3 libdealer

B libdealer.swift

Support for Building Other Languages

Support for Building Other Languages

The Design of SwiftPM

A |
Dependencies

|
&

Semantic Versioning

semver.org

Major Version

Breaking changes

Minor Version

Compatible additions

Patch Version

Bug fixes

Dependency Resolution

Direct Dependencies

Resolving Versions

Resolving Versions

Resolving Versions

Transitive Dependencies

Transitive Dependencies

/ \
mmr

Transitive Dependencies

/ \
e

Transitive Dependencies

/ \
aE

Transitive Dependencies

/ \
aE

Resolving Products

N

Resolving Products

/ \
- —
e

Package.resolved Resolved Versions File

Records resolved package versions
Can be shared for dependable build results
Easy to update with new version resolution

Only used from the top-level package

The Design of SwiftPM

Building

lIbuild

SWIftPM’s build execution engine

Provides fast and correct incremental builds ——‘

Also used by Xcode's new builld system

Part of the Swift open source project

Build Environment Isolation

SwiftPM builds packages in isolation
Builds are sandboxed

No arbitrary commands or shell scripts

Parallel Testing

Test Filtering

)) J
“
.' \ .'
Jl l‘ ,i
| | |

The Design of SwiftPM

Workflow
Features

Edit Mode

Edit Mode

Branch Dependencies

.branch("master")

from: "1.0.0" .branch("master")

Local Package Dependencies

The Design of SwiftPM

Tools Evolution

Package.swift Manifest API Evolution

Package API can be updated with each
new Swift version

Previous APl is still available

Allows using new Swift tools without
updating the manifest

Swift Tools Version

Swift Language Version

The Design of SwiftPM

Configuration

A |
Dependencies

| N
&

Workflow & Building
Features

Tools Evolution

Why a package manager for Swift?
How to use It

The design of SwiftPM

Evolution ideas

Open source process

Open Evolution Process

Great integration with other tools
Publish and deploy
Support complex packages

FInd, manage, and trust packages

Great Integration with Other Tools

liIbSwiftPM Available

SWITtPM support In
developer tools Is encouraged!

ldea: Machine-Editable Package.swift

ldea: Machine-Editable Package.swift

[IbSyntax

ldea: Machine-Editable Package.swift

let package = Package(
name: "Networking",
products: [
.library(name: "Networking", targets: ["Networking"])
I
targets: [
.target(
name: "Networking",
dependencies: [1]),

ldea: Machine-Editable Package.swift

let package = Package(
name: "Networking",
products: [
.library(name: "Networking", targets: ["Networking"])
I
targets: [
.target(
name: "Networking",
dependencies: ["NetworkCore"]),
.target
name: "NetworkCore",
dependencies: []),

Publish and Deploy

ldea: Tagging and Publication Support

$ gittag 2.1.9

. $ git push origin 2.1.9

ldea: Automatic Semantic Versioning

public func findPerson(
firstName: String)
—> Contact

J 1.6.0

public func findPerson(
firstName: String,
lastName: String)
—> (Contact

ldea: Deployment Automation

ldea: Deployment Automation

Support Complex Packages

Resources

ldea

£
[S]
O
(3
—
ol
al
@©
=
3
=
~
-—
ol
)
H
L

ldea: Build Settings

ldea: Extensible Build Tools

Trust, Manage, and Find Packages

ldea: Package Content Verification

ldea: Cross-Platform Sandboxing

ldea: Fork Support

ldea: Package Index

AcmeUltils

NiftyNetworking

YetAnotherProtocol

NextGreatThing

Your Contributions

Why a package manager for Swift?
How to use It

The design of SwiftPM

Evolution ideas

Open source process

NI
I
?;-,v-j
U

Swift.org - Package Manager

SERVER APIS worx orour) Pa Ckag e M a n ag er

COMPILER AND

FIRBREEEE RIREARE The Swift Package Manager is a tool for managing the distribution of Swift

PACKAGE MANAGER code. It's integrated with the Swift build system to automate the process of

Conceptual Overview downloading, compiling, and linking dependencies.

Example Usage

The Package Manager is included in Swift 3.0 and above.

Community Proposal

CORE LIBRARIES

REPL, DEBUGGER &

Conceptual Overview

nttps://swift.org/package-manager/

Swift Evolution

-
.
(4

.. -' _

GitHub - apple/swift-evolution: This maintains proposals for changes and user-visible enhancements to the Swift Programming Language. —he

Swift Programming Language Evolution

Before you initiate a pull request, please read the process document. Ideas should be thoroughly discussed on the swift-
evolution forums first.

This repository tracks the ongoing evolution of Swift. It contains:

e (Goals for upcoming Swift releases (this document).
e The Swift evolution review status tracking proposals to change Swift.
e The Swift evolution process that governs the evolution of Swift.

e Commonly Rejected Changes, proposals that have been denied in the past.

This document describes goals for the Swift language on a per-release basis. These releases include minor releases that
add to the currently shipping version plus one major release out. Each release will have many smaller features or changes

Independent of these larger goals, and not all goals will be reached for each release.

nttps://github.com/apple/switt-evolution

Swift Forums

Latest Package Manager topics - Swift Forums —-

B Development » Package Manager » all tags »

% About the Package Manager category

For developers to discuss the implementation of the Swift package manager.
This category will accept email sent to: swift+swiftom@forums.swift.org

Swift 4.2, Package.swift and using Swift as a markup language ,@ @ @ %

Generating LinuxMain breaks when renaming a test a 3 @

nttps://forums.swift.org/c/development/SwiftPM

Swift Bug Tracker

@00 < > [@& bugs.swift.org & Uil
[SR-4186] Support enforcing minimum tools version based on PackageDescription APl used - Swift |-

@ Swift Dashboards Projects Issues

Sea rCh Save as ‘! Export ~ 3 Tools ~

Swift v Type: All v Status: All v Assignee: All ~ Morev Q Advanced =0 ~

Resolution: Unresolved ~ Component: Package Manager ~

™ SR-4186 Details People

Support enforcing minimum tool. .. Type: =34 New Feature Assignee:

) SR-4084 Status: OPEN_ N Ankit Aggarwal
Automate setting development b... Priority: r Medium

Resolution: Unresolved

Reporter:
D SR-4045

Component/s: Package Manager Rick Ballard
Increase test coverage of null bu...

Labels: None Votes:

ki SR-4402 Radar URL: rdar://problem/4020547 1 0 Vote for this issue

Possible Workspace APl improv...

Watchers:

L SR-4394 Description 2 Start watching this issue

& {1234) We should support enforcing a minimum swift-tools-version based on the
newest PackageDescription API in use.

nttps://bugs.switt.org

Swift Bug Tracker—Starter Bugs

@00 <> N

@ bugs.swift.org ¢,

[SR-1402] Check dependency graph for possible collisions - Swift

Dashboards

£ Swift

Projects Issues

Save as

Search

Swift v Type: All + Status: All ~

Resolution: Unresolved ~

£y SR-1402 Details

Type:

Status:

L SR-6978
SwiftPM ignores vX.X.X style ta... Priority:

Resolution:
) SR-7559

- | | Component/s:
Building swiftpm requires rsync, ...

Labels:

L SR-4329 Radar URL:

SwiftPM should have a feature t...

L3 SR-7279 Description

Assignee: All ~

Component: Package Manager ~

More ~ Q Advanced

Label: StarterBug ~

& Bug

M Medium
Unresolved
Package Manager

tarterBug
rdar://problem/40206312

! Export ~

People

Assignee:

Unassigned

Reporter:
N Ankit Aggarwal

Voties:

o Vote for this issue

Watchers:

4 Start watching this issue

3 Tools ~

=0 ~

If an external dependency has a module name same as a module in root
package the root package module is not compiled at all. This should

nttps://bugs.swift.org

Swift Bug Tracker—Starter Bugs

® 0 < > M

@ bugs.swift.org «

[SR-1402] Check dependency graph for possible collisions - Swift

Dashboards Issues

Y Swift

Projects

Save as

Search

Swift v Type: All v Status: All ~

Resolution: Unresolved ~

£y SR-1402 Details

Type:
Status:
Priority:

[SR-6978

SwiftPM ignores vX.X.X style ta...

Resolution:
B SR-7559

Component/s:
Building swiftpm requires rsync, ...

B SR-4329
SwiftPM should have a feature t. ..

Radar URL.:

0 SR-7279 Description

Assignee: All ~

Component: Package Manager ~

More ~ Q Advanced

w

& Bug

T Medium
Unresolved

Package Manager

rdar://problem/40206312

> If an external dependency has a module name same as a module in root
package the root package module is not compiled at all. This should

https://bugs.swift.org

@

"W Export ~

People

Assignee:

U—

Unassigned

Reporter:
A‘ Ankit Aggarwal

Votes:

o Vote for this issue

Watchers:

4 Start watching this issue

Log In

3% Tools ~

=0 ~

Swift Bug Tracker—Starter Bugs

@00 <> N

@ bugs.swift.org ¢,

[SR-1402] Check dependency graph for possible collisions - Swift

Dashboards

£ Swift

Projects Issues

Save as

Search

Swift v Type: All + Status: All ~

Resolution: Unresolved ~

£y SR-1402 Details

Type:

Status:

L SR-6978
SwiftPM ignores vX.X.X style ta... Priority:

Resolution:
) SR-7559

- | | Component/s:
Building swiftpm requires rsync, ...

Labels:

L SR-4329 Radar URL:

SwiftPM should have a feature t...

L3 SR-7279 Description

Assignee: All ~

Component: Package Manager ~

More ~ Q Advanced

Label: StarterBug ~

& Bug

M Medium
Unresolved
Package Manager

tarterBug
rdar://problem/40206312

! Export ~

People

Assignee:

Unassigned

Reporter:
N Ankit Aggarwal

Voties:

o Vote for this issue

Watchers:

4 Start watching this issue

3 Tools ~

=0 ~

If an external dependency has a module name same as a module in root
package the root package module is not compiled at all. This should

nttps://bugs.swift.org

Swift Continuous Integration

e ™ e =4
A
‘

@

-
_ |
‘

— T —— R— g —. v‘-‘u'\.}"'-‘

Trigger (swift 4.2)

0SS - Swift Package
Trigger (master)

10 Idle

= mac0S-05

1. OSS - Swift (Tools
Opt+Assert, Stdlib

Opt+DeblInfo+Assert,
Test Simulator) - OS #8957
X (master)

= mac0S-06
1. OSS - Swift (Tools

Pull Request [Jenkins]

Swift Package Manager Request
Test Linux

Swift Package Manager Request
Test Linux (smoke test)

\ '

Swift Package Manager Request
Test OS X

Swift Package Manager Request
Test OS X (smoke test)

\ '

Swift Package Manager Test and
Vierge

Swift Pull Request ASAN OS X

Swift Pull Request Benchmark OS

13 qays - #16

4 days 20 hr -
#321

13 qays - #16

4 days 20 hr -
#311

2 Mo 23 days
- #1

4 days 23 hr -
#33

6 days 2 hr -

: Q o

3 mo 13 days
- #8

13 days -
#315

3 mo 13 days
- #7

1 mo 13 days
- #290

2 mo 19 days
- #28

18 days -

N OL-\

Oswift—-c1 please test

1 hr 18 min

4 hr 21 min

6 hr 22 min

Trunk Snhapshots

/3 -

Swift.org - Download Swift -

Trunk Development (master)

Development Snapshots are prebuilt binaries that are automatically created

from mainline development branches. These snapshots are not official

releases. They have gone through automated unit testing, but they have
BLOG not gone through the full testing that is performed for official releases.

ABOUT SWIFT

DOWNLOAD

Releases Download

Snapshots

Xcode

Using Downloads June o, 2018
(Debugging Symbols)

GETTING STARTED Ubuntu 16.10

DOCUMENTATION (Signature)

June o, 2018

SOURCE CODE Ubuntu 16.04

(Signature)

June 9, 2018

https://swift.org/download/#snhapshots

Growing Community

B H j & github.com

GitHub - apple/swift-package-manager: The Package Manager for the Swift Programming Language —+-

apple / swift-package-manager ® Watch 396 ¥ Star 6,283

<> Code Pull requests 19 Insights

The Package Manager for the Swift Programming Language

() 3,595 commits ¥ 15 branches O 791 releases 22 183 contributors 5[s Apach

Branch: master » Find file P&l

3:'; -‘-‘:-"'-:.r\ - - /}—

p vim Merge pull request #1588 from vim/deprecate-standalone-currentWorking... - Latest commit 5fda1ld

Documentation [Docs] Update stale mailing list url to Swift forums
B8 Fixtures Removed code thanks to Equatable synthesis

Sources Merge pull request #1588 from vim/deprecate-standalone-currentWorking...

Growing Community

@0 e ¢ N & github.com &)

GitHub - apple/swift-package-manager: The Package Manager for the Swift Programming Language —-

| apple / swift-package-manager @O Watch 396 W Star 6,283
<> Code Pull requests 19 Insights

The Package Manager for the Swift Programming Language

D 3,695 commits ¥ 15 branches O 791 releases 3 5[s Apach

Branch: master v lew pull reques! Find file | clﬁm1

D vim Merge pull request #1588 from vim/deprecate-standalone-currentWorking... = Latest commit 5fd@1ld

2 Documentation |Docs] Update stale mailing list url to Swift forums
B8 Fixtures Removed code thanks to Equatable synthesis

B Sources Merge pull request #1588 from vim/deprecate-standalone-currentWorking...

Server-Side Swift

Server-Side Swift

Command-Line Utilities

$ swift package init

More Information

https://developer.apple.com/wwdc18/411

Swift Open Hours Technology Lab 10 Friday 3:00PM

