
#WWDC18

© 2018 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Rick Ballard, SwiftPM Release Manager
Boris Buegling, Developer Tools Engineer

•Getting to Know 
Swift Package Manager
•Session 411

•Why a package manager for Swift?
•How to use it
•The design of SwiftPM
•Evolution ideas
•Open source process

•Why a package manager for Swift?
•How to use it
•The design of SwiftPM
•Evolution ideas
•Open source process

A Cross-Platform Build System for Swift

A Cross-Platform Build System for Swift

mac

OS Ubuntu Future
Platforms

Canonical Package Management Tool

mac

OS Ubuntu Future
Platforms

Canonical Package Management Tool

Code Reuse Beyond the Core Libraries

Foundation Dispatch XCTest

stdlib system

Code Reuse Beyond the Core Libraries

Foundation Dispatch XCTest

stdlib system

Take Full Advantage of the Power of Swift

Take Full Advantage of the Power of Swift

+

Part of Swift Open Source Project

https://swift.org/package-manager/

Included in Swift Toolchains

https://swift.org/download/

Included with Xcode

•Why a package manager for Swift?
•How to use it
•The design of SwiftPM
•Evolution ideas
•Open source process

SwiftPM Commands

Packages Use Git

f0a510

dc0530

fb5294

aadf53

•Demo
•Creating your first package

Anatomy of a Package

TargetsProductsProductsDependenciesDependencies

Anatomy of a Package

TargetsProductsProducts

DependenciesDependencies

Anatomy of a Package

Targets ProductsProducts

DependenciesDependencies

Anatomy of a Package

Targets ProductsProducts

DependenciesDependencies

Dependencies

Dependencies

Dependencies

Dependencies

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],

Targets

Targets Depend on Other Targets and Products

Targets Depend on Other Targets and Products

Products

Products

Packages Provide Products

Linkage:

Automatic

Static

Dynamic

Packages Provide Products

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "dealer",
 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],
 dependencies: [
 .package(url: "git@github.com:apple/example-package-deckofplayingcards", from: "3.0.0")
],
 targets: [
 .target(name: "libdealer", dependencies: ["DeckOfPlayingCards"]),
 .target(name: "dealer", dependencies: ["libdealer"]),
 .testTarget(name: "dealerTests", dependencies: ["libdealer", "dealer"]),
]
)

 products: [
 .library(name: "libdealer", targets: ["libdealer"]),
 .executable(name: "dealer", targets: ["dealer"]),
],

•Demo
•Adding dependencies

•Why a package manager for Swift?
•How to use It
•The design of SwiftPM
•Evolution ideas
•Open source process

Following Swift’s Philosophy

Safe

Fast

Expressive

Following Swift’s Philosophy

Safe

Fast

Expressive

Safe: isolated build environment

Following Swift’s Philosophy

Safe

Fast

Expressive

Safe: isolated build environment Safe: isolated build environment

Fast: scalable to large dependency graphs

Following Swift’s Philosophy

Safe: isolated build environment

Fast: scalable to large dependency graphs

Expressive: Swift language manifest format

Safe

Fast

Expressive

Safe: isolated build environment Safe: isolated build environment

Fast: scalable to large dependency graphs

The Design of SwiftPM

Dependencies

Workflow 
Features

Building

Tools Evolution

Configuration

The Design of SwiftPM

Dependencies

Workflow 
Features

Building

Tools Evolution

Configuration

Swift Language Manifest Format

Easy to understand

Follows Swift API design guidelines

Supported by existing Swift tools

Prefer Declarative Syntax

// swift-tools-version:4.2
import PackageDescription

let package = Package(
 name: "A",
 targets: [
 .target(
 name: "A",
 dependencies: []),
 .testTarget(
 name: "ATests",
 dependencies: ["A"]),
]
)

// swift-tools-version:4.2
import PackageDescription

let name = generateName()
let package = Package(
 name: name,
 targets: [
 .target(
 name: name,
 dependencies: []),
 .testTarget(
 name: "\(name)Tests",
 dependencies: [.target(name: name)])
])

😐 😊

Specifying Package Source Files

 Sources

 dealer

 main.swift

 libdealer

 libdealer.swift

Convention versus Configuration

 Sources

 dealer

 main.swift

 libdealer

 libdealer.swift

 …
 products: [
 .library(name: "libdealer",
 targets: ["libdealer"]),
 …
 targets: [
 .target(name: "libdealer",
 dependencies: ["DeckOfPlayingCards"]),
 …

Convention versus Configuration

 Sources

 dealer

 main.swift

 libdealer

 libdealer.swift

 …
 products: [
 .library(name: "libdealer",
 targets: ["libdealer"]),
 …
 targets: [
 .target(name: "libdealer",
 dependencies: ["DeckOfPlayingCards"]),
 …

Convention versus Configuration

 Sources

 dealer

 main.swift

 libdealer

 libdealer.swift

 …
 products: [
 .library(name: "libdealer",
 targets: ["libdealer"]),
 …
 targets: [
 .target(name: "libdealer",
 dependencies: ["DeckOfPlayingCards"]),
 …

Support for Building Other Languages

Support for Building Other Languages

The Design of SwiftPM

Workflow 
Features

Tools Evolution

Configuration

Building

Dependencies

Semantic Versioning
semver.org

1.2.4
Major Version

Breaking changes

1.2.4
Minor Version

Compatible additions

1.2.4
Patch Version

Bug fixes

Dependency Resolution

Direct Dependencies

dealer

swiftpm.git
.exact("0.2.1")

deck.git
from: "3.0.0"

Resolving Versions

dealer

deck.git
tag 3.1.4
deck.git

from: "3.0.0"
swiftpm.git
tag 0.2.1
swiftpm.git

.exact("0.2.1")

Resolving Versions

dealer

deck.git
tag 3.1.4
deck.git

from: "3.0.0"
swiftpm.git
tag 0.2.1

Resolving Versions

dealer

deck.git
tag 3.1.4

swiftpm.git
tag 0.2.1

Transitive Dependencies

dealer

swiftpm.git
tag 0.2.1

deck.git
tag 3.1.4

Transitive Dependencies

dealer

swiftpm.git
tag 0.2.1

deck.git
tag 3.1.4

fisher-yates.git
from: "2.0.0"

playing-card.git
upToNextMinor: "3.0.0"

fisher-yates.git
tag 2.2.5

fisher-yates.git
from: "2.0.0"

playing-card.git
tag 3.0.2

Transitive Dependencies

dealer

playing-card.git
upToNextMinor: "3.0.0"

swiftpm.git
tag 0.2.1

deck.git
tag 3.1.4

fisher-yates.git
tag 2.2.5

playing-card.git
tag 3.0.2

Transitive Dependencies

dealer

playing-card.git
upToNextMinor: "3.0.0"

swiftpm.git
tag 0.2.1

deck.git
tag 3.1.4

fisher-yates.git
tag 2.2.5

playing-card.git
tag 3.0.2

Transitive Dependencies

dealer

swiftpm.git
tag 0.2.1

deck.git
tag 3.1.4

playing-card.gitfisher-yates.git

deck.gitswiftpm.git

Resolving Products

libdealer

playing-card.gitPlayingCardfisher-yates.gitFisherYates

deck.gitDeckOfPlayingCardsswiftpm.gitUtility

Resolving Products

libdealer

Package.resolved Resolved Versions File

Records resolved package versions

Can be shared for dependable build results

Easy to update with new version resolution

Only used from the top-level package

The Design of SwiftPM

Workflow 
Features

Tools Evolution

Configuration
Dependencies

Building

llbuild

SwiftPM’s build execution engine

Provides fast and correct incremental builds

Also used by Xcode’s new build system

Part of the Swift open source project

Build Environment Isolation

SwiftPM builds packages in isolation

Builds are sandboxed

No arbitrary commands or shell scripts

Testing

Parallel Testing

Test Filtering

The Design of SwiftPM

Tools Evolution

Configuration
Dependencies

BuildingWorkflow 
Features

Edit Mode
📝

Edit Mode
📝

Branch Dependencies
🌳

from: "1.0.0"

.branch("master")

.branch("master")

Local Package Dependencies

The Design of SwiftPM

Workflow 
Features

Configuration
Dependencies

Building

Tools Evolution

Package.swift Manifest API Evolution

Package API can be updated with each 
new Swift version

Previous API is still available

Allows using new Swift tools without 
updating the manifest

Swift Tools Version

// swift-tools-version:4.2
import PackageDescription

let package = Package(…, swiftLanguageVersions: [.v4_2, .v4])

Swift Language Version

// swift-tools-version:4.2
import PackageDescription

let package = Package(…, swiftLanguageVersions: [.v4_2, .v4])

The Design of SwiftPM

Workflow 
Features

Tools Evolution

Configuration
Dependencies

Building

•Why a package manager for Swift?
•How to use it
•The design of SwiftPM
•Evolution ideas
•Open source process

Open Evolution Process

Themes

Great integration with other tools

Publish and deploy

Support complex packages

Find, manage, and trust packages

•Great Integration with Other Tools

libSwiftPM Available

SwiftPM support in 
developer tools is encouraged!

Idea: Machine-Editable Package.swift

Idea: Machine-Editable Package.swift

+

libSyntax

Idea: Machine-Editable Package.swift

let package = Package(
 name: "Networking",
 products: [
 .library(name: "Networking", targets: ["Networking"])
],
 targets: [
 .target(
 name: "Networking",
 dependencies: []),
]
)

Idea: Machine-Editable Package.swift

let package = Package(
 name: "Networking",
 products: [
 .library(name: "Networking", targets: ["Networking"])
],
 targets: [
 .target(
 name: "Networking",
 dependencies: ["NetworkCore"]),
 .target(
 name: "NetworkCore",
 dependencies: []),
]
)

•Publish and Deploy

Idea: Tagging and Publication Support

$ git tag 2.1.9

$ git push origin 2.1.9

2.1
.9

Idea: Automatic Semantic Versioning

public func findPerson( 
 firstName: String) 
 -> Contact

public func findPerson( 
 firstName: String, 
 lastName: String) 
 -> Contact

1.6.0

2.0.0

Idea: Deployment Automation

Idea: Deployment Automation

•Support Complex Packages

Idea: Resources

json

Idea: Build Settings

Idea: Extensible Build Tools

DocGen

Docs

•Trust, Manage, and Find Packages

Idea: Package Content Verification

Idea: Cross-Platform Sandboxing

Idea: Fork Support

Idea: Package Index

AcmeUtils

NiftyNetworking

YetAnotherProtocol

NextGreatThing

Build Settings

Resources

Extensible Build Tools

Tag & Publish

Automatic SemVer

Deployment Automation

Leverage libSwiftPM

Machine-Editable Package.swift

Verify Expected Package Content

Cross-Platform Sandboxing

Fork Support

Package Index

Your Contributions

•Why a package manager for Swift?
•How to use it
•The design of SwiftPM
•Evolution ideas
•Open source process

https://swift.org/package-manager/

Swift Evolution

https://github.com/apple/swift-evolution

Swift Forums

https://forums.swift.org/c/development/SwiftPM

Swift Bug Tracker

https://bugs.swift.org

Swift Bug Tracker—Starter Bugs

https://bugs.swift.org

Swift Bug Tracker—Starter Bugs

https://bugs.swift.org

Swift Bug Tracker—Starter Bugs

https://bugs.swift.org

Swift Continuous Integration

@swift-ci please test

Trunk Snapshots

https://swift.org/download/#snapshots

Growing Community

Growing Community

Server-Side Swift

Server-Side Swift

+

Command-Line Utilities

•$ swift package init

More Information
https://developer.apple.com/wwdc18/411

Swift Open Hours Technology Lab 10 Friday 3:00PM

