System Frameworks #WWDC1/

What's New In Core Bluetooth

Session 712

Craig Dooley, Bluetooth Engineer
Duy Phan, Bluetooth Engineer

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.



Introduction
Enhanced reliability
Platform support
L2CAP channels
Best practices

Getting the most out of Core Bluetooth



Introduction















LY




C O 0 0 00000050 0

o 000000009
© 00000 OO0 o0

i,

e S

T *

Q)

o e

P v e e A

o




Thank you!



Built-in Profiles

Apple Notification Center Service
Apple Media Service

MIDI over Bluetooth Low Energy
IBeacon

Current Time Service

HID Over GATT



Centrals and Peripherals




Centrals and Peripherals




Centrals and Peripherals




Centrals and Peripherals




GATT Database




GATT Database




GATT Database




Reading Characteristics as a Central

Services can be read from a connected Central
* Retrieve by identifier

* Retrieve connected devices

open class CBCentralManager : CBManager A
open func retrievePeripherals(withIdentifiers identifiers: [UUID]) —-> [CBPeripherall
open func retrieveConnectedPeripherals(withServices serviceUUIDs: [CBUUID]) ->
[CBPeripherall

¥



Enhanced Reliability



Summary




Backgrounded Apps

I0S Apps can continue using Core Bluetooth in the background



Backgrounded Apps

I0S Apps can continue using Core Bluetooth in the background



CBCentralManager restoration

Central operations can continue when your app Is not running
« Scan for new devices with services

* Connect to an already known device



public let CBCentralManagerOptionRestorelIdentifierKey: String

Wseealso
Useealso

Wseealso

optional public func centralManager(_ central: CBCentralManager, wlillRestoreState dict:
[String: Any])



CBPeripheralManager Restoration

Peripheral operations can continue when your app Is nhot running
* Publish local services

* Advertise service UUID



public let CBPeripheralManagerOptionRestoreldentifierKey: String

/ *
* (@seealso CBPeripheralManagerRestoredStateServicesKey;
* (@seealso CBPeripheralManagerRestoredStateAdvertisementDataKey;
X
* /

optional public func peripheralManager(_ peripheral: CBPeripheralManager,
willRestoreState dict: [String: Any]l)



State Preservation and Restoration @




State Preservation and Restoration @

Works across device reboot or Bluetooth system events



State Preservation and Restoration @

Works across device reboot or Bluetooth system events

 Try to ask for as few system resources as possible



State Preservation and Restoration @

Works across device reboot or Bluetooth system events
 Try to ask for as few system resources as possible
» Background activities will be stopped if



State Preservation and Restoration @

Works across device reboot or Bluetooth system events
 Try to ask for as few system resources as possible
» Background activities will be stopped if

- User force quits the app



State Preservation and Restoration @

Works across device reboot or Bluetooth system events
 Try to ask for as few system resources as possible
» Background activities will be stopped if

- User force quits the app

- User disables Bluetooth



Write Without Response

Write Without Response would be dropped due to memory pressure

New property will tell your app if more data can be sent

open class CBPeripheral: CBPeer {

open var canSendWriteWithoutResponse: Bool { get }

public protocol CBPeripheralDelegate: NSObjectProtocol {

optional public func peripherallIsReady(toSendWriteWithoutResponse peripheral:
CBPeripheral)

¥



Platform Support



muil



ttttt



ttttttttttttt



I0S + macOS



I0S + macOS

Foreground and background apps



I0S + macOS

Foreground and background apps

Central and Peripheral



I0S + macOS

Foreground and background apps
Central and Peripheral

15 ms minimum connection interval



I0S + macOS

Foreground and background apps
Central and Peripheral
15 ms minimum connection interval

State Preservation and Restoration on iOS



tvOS

tvOS



tvOS

Foreground app only tVOS



tvOS

Foreground app only tVOS

Central role only



tvOS

Foreground app only tVOS

Central role only

Limited to 2 simultaneous connections



tvOS

Foreground app only tVOS

Central role only
Limited to 2 simultaneous connections

30 ms minimum connection interval



tvOS

Foreground app only tVOS

Central role only
Limited to 2 simultaneous connections
30 ms minimum connection interval

Peripherals disconnected when app is
moved to the background



watchOS




watchOS

Access dictated by system runtime policies



watchOS

Access dictated by system runtime policies

Central role only



watchOS

Access dictated by system runtime policies

Central role only

Limited to 2 simultaneous connections



watchOS

Access dictated by system runtime policies
Central role only
Limited to 2 simultaneous connections

30 ms minimum connection interval



watchOS

Access dictated by system runtime policies
Central role only

Limited to 2 simultaneous connections

30 ms minimum connection interval

Peripherals disconnected when app is
suspended



watchOS

Access dictated by system runtime policies
Central role only

Limited to 2 simultaneous connections

30 ms minimum connection interval

Peripherals disconnected when app is
suspended

Supported on Apple Watch Series 2




L2CAP Channels



L2CAP Connection Oriented Channels

Bluetooth SIG Protocol underlying all communication
Logical Link Control and Adaptation Protocol
Stream between two devices

Introduced for LE in Bluetooth Core Spec 4.1



L2CAP Channels




L2CAP Channels




Central Side L2CAP

Open an L2CAP Channel on an existing CBPeripheral connection




PSM

SIG Specified PSM for standardized profiles

Locally assigned PSM for dynamic services




Peripheral Side L2CAP

Listen for incoming L2CAP Channels




Opening an L2CAP Channel




Opening an L2CAP Channel

e ——————— %
.‘) .‘)




Opening an L2ZCAP Channel

optional public func peripheralManager(_ peripheral: CBPeripheralManager,
didPublishL2CAPChannel PSM: CBL2CAPPSM, error: Error?)



Opening an L2CAP Channel




Opening an L2CAP Channel




Opening an L2CAP Channel




Opening an L2CAP Channel




Opening an L2CAP Channel

D e EEEEE——

/_—\

() ()




@Pavailable(macOS 10.13, 10S 11.0, )
open class CBL2CAPChannel: NSObject {

open

open

open

open

var peer: CBPeer! { get }

var inputStream: InputStream! { get }

var outputStream: OutputStream! { get %}

var psm: CBL2CAPPSM { get }



Stream Events

Stream events are delivered through NSStream




Closing Channels

Channels may be closed due to
* Link loss

 Central close

 Peripheral unpublished

* Peripheral object is released



When Should L2CAP Be Used?

Use GATT where it makes sense
Lowest overhead

Best performance

Best for large data transfers

Great for stream protocols



Best Practices




Follow the Bluetooth Accessory
Design Guidelines for Apple Products



Use Existing Profiles and Services



Why does It take so long to connect?



Time to Discover

Peripheral

Advertisement

N

Advertising

Central

I ————————T

Scanning



Time to Discover

Peripheral
Advertisement Advertisement Advertisement Advertisement
Advertising
Central
Scan Scan

Scanning



Connection Speed

Use the shortest advertising interval possible
Optimize for when users are trying to use your accessory

See the Bluetooth Accessory Design Guidelines for power-efficient advertising
Intervals



Reconnecting devices

No need to scan for a peripheral for reconnect

Retrieve the peripheral and directly connect




Service Discovery Speed




Service Discovery Speed

Use as few services/characteristics as possible




Service Discovery Speed

Use as few services/characteristics as possible



Service Discovery Speed

Use as few services/characteristics as possible

Group services by UUID size



Service Discovery Speed

Use as few services/characteristics as possible
Group services by UUID size

Support GATT Caching



Service Discovery Speed

Battery Level

Use as few services/characteristics as possible

Serial Number
Software Version

Group services by UUID size

Support GATT Caching

MyData

OtherData

Use “Service Changed”



New Accessory Recommendations

Use the newest chipset / Bluetooth standard available
4.2 and 5.0 are backward compatible

Follow these best practices



Getting the Most out of Core Bluetooth

Duy Phan, Bluetooth Engineer



TMB = 3,240 seconds
2.5 Kbps



Protocol Overhead

Packet



Protocol Overhead

Packet



Write With Response

Central

Peripheral




Write With Response

Central

Peripheral

Response |




Write With Response

Central

Peripheral

Int
Int
Int



Write Without Response

Reliable with Core Bluetooth flow control
Use all available connection events to transmit

Takes advantage of larger Connection Event Length



Write Without Response

Int
Int

Int



Write Without Response

Default MTU

37 kbps

Int



Write Without Response

Default MTU

37 kbps

Int



Write Without Response

Default MTU

37 kbps

ELarger MTU




Fitting your data

Apple devices determine the optimal MTU

Accessories should support a large MTU

Use large attributes alighed to MTU




Write Without Response

Default MTU

37 kbps

ELarger MTU




Write Without Response

Default MTU

37 kbps

ELarger MTU

EEDL




Write Without Response

Default MTU

37 kbps

ELarger MTU

EEDL

135 kbps



Extended Data Length

New Feature in Bluetooth 4.2

Much larger packets (251 vs 27 bytes)
Transparent to the application

4x throughput with the same radio time

Avallable on iPhone 7 and Apple Watch Series 2



L2CAP Connection Oriented Channels




L2CAP Connection Oriented Channels

197 kbps

Packet



Faster Connection Interval

L2CAP + EDL

I B N

Int
Interva
Int



Faster Connection Interval

L2CAP + EDL

394 kbps

®

>

| -

o
e — e e e
£ £ £ £ £



Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

40

30

120

160

200

240

280

320

360

21010



Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

2.5

40

30

120

160

200

240

280

320

360

21010



Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

2.5

5.2

40

30

120

160

200

240

280

320

360

21010



Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

2.5

40

30

120

160

200

240

280

320

360

21010



Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

40

30

120

160

200

240

280

320

360

21010



Throughput (kbps)

Write With Response
Write Without Response
Packed CE Length
Larger MTU

EDL

135

L2CAP + EDL

L2CAP + EDL + 15ms Int

0 40 30 120 160 200 240 280 320 360 21010



Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

2.5

197

40

30

120

160

200

240

280

320

360

21010



Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

2.5

394

40

30

120

160

200

240

280

320

360

21010



Summary

Request a shorter Connection Interval
Take advantage of GAT T optimizations
Use L2CAP Channel for large transfers and stream protocols

Update your hardware (4.2 EDL, 5.0) for best performance and battery life



Wrap Up

Craig Dooley, Bluetooth Engineer



Key Takeaways

Check out State Restoration

Expand your app to tvOS and watchOS

Use L2CAP for stream protocols or large data transfers
Use the newest Bluetooth chipset available

Follow the Bluetooth Accessory Design Guidelines



More Information
https://developer.apple.com/wwdc1//712



Related Sessions

Core Bluetooth 101 WWDC 2012

Core Bluetooth WWDC 2013




Labs

Bluetooth Lab Technology Lab J Thur 12:00PM-2:00PM

Bluetooth Lab Technology Lab J Fri12:00PM-2:00PM









