
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Explore the deep end of the Instruments pool

Developer Tools #WWDC16

Session 411

System Trace in Depth

Chad Woolf Performance Tools Engineer
Joe Grzywacz Performance Tools Engineer

Session 412 - Time Profiling in Depth
Last Year…

WWDC 2015

Session 412 - Time Profiling in Depth
Last Year…

Multi-core

Multi-core

Get more done

Multi-core

Get more done
System load changes performance

Multi-core

Get more done
System load changes performance
High system load increases
• Preemption
• Lock contention
• Virtual memory activity

System Trace in Depth

System tracing in depth
Agenda

System tracing in depth
Agenda

System Trace for Apps

System tracing in depth
Agenda

System Trace for Apps
Using System Trace
• Theading
• Signposts
• Virtual Memory
• Best Practices

locationd mach

notifyd

backboardd

SpringBoard

aggregated

Graphasaurus 2

wifid

locationd mach

notifyd SpringBoard

aggregated

Graphasaurus 2

backboarddwifid

locationd mach

notifyd

backboardd

SpringBoard

aggregated

Graphasaurus 2

wifid

System Trace

System Trace

Records a kernel trace

System Trace

Records a kernel trace
• Scheduling activity

System Trace

Records a kernel trace
• Scheduling activity
• System calls

System Trace

Records a kernel trace
• Scheduling activity
• System calls
• Virtual memory operations

System Trace

Records a kernel trace
• Scheduling activity
• System calls
• Virtual memory operations

System Trace

Records a kernel trace
• Scheduling activity
• System calls
• Virtual memory operations

Windowed Mode in Instruments 8

NEW

System Trace

Records a kernel trace
• Scheduling activity
• System calls
• Virtual memory operations

Windowed Mode in Instruments 8
• Keeps last ~5 sec of data

5 sec

Time

NEW

System Trace

Records a kernel trace
• Scheduling activity
• System calls
• Virtual memory operations

Windowed Mode in Instruments 8
• Keeps last ~5 sec of data
• Gives you more time to reproduce

5 sec

Time

NEW

Points of Interest NEW

Points of Interest

You tell Instruments what’s interesting

NEW

Points of Interest

You tell Instruments what’s interesting
Signposts

NEW

Points of Interest

You tell Instruments what’s interesting
Signposts
Classic:

NEW

syscall(SYS_kdebug_trace, ...)

Points of Interest

You tell Instruments what’s interesting
Signposts
Classic:

iOS 10 / macOS Sierra / tvOS 10/ watchOS 3:

NEW

syscall(SYS_kdebug_trace, ...)

kdebug_signpost
kdebug_signpost_start
kdebug_signpost_end

Events
Points of Interest

Indicate an interesting point in time
Arbitrary code (0 - 16383)
4 uintptr_t arguments

// Point of Interest

func mouseDown(_ event: NSEvent) {

 // Emit a signpost for Instruments

 kdebug_signpost(5, 0, 0, 0, 0)

}

Events
Points of Interest

Indicate an interesting point in time
Arbitrary code (0 - 16383)
4 uintptr_t arguments

// Point of Interest

func mouseDown(_ event: NSEvent) {

 // Emit a signpost for Instruments

 kdebug_signpost(5, 0, 0, 0, 0)

}

Events
Points of Interest

Indicate an interesting point in time
Arbitrary code (0 - 16383)
4 uintptr_t arguments

// Point of Interest

func mouseDown(_ event: NSEvent) {

 // Emit a signpost for Instruments

 kdebug_signpost(5, 0, 0, 0, 0)

}

Events
Points of Interest

Indicate an interesting point in time
Arbitrary code (0 - 16383)
4 uintptr_t arguments

// Point of Interest

func mouseDown(_ event: NSEvent) {

 // Emit a signpost for Instruments

 kdebug_signpost(5, 0, 0, 0, 0)

}

Named codes
Points of Interest NEW

Named codes
Points of Interest NEW

Named codes
Points of Interest NEW

States or actions
Regions of Interest

Indicate an interesting range of time
Arbitrary code
Four integer/pointer arguments at start and end

// Timing an activity (code 10 - "Start Up")

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 kdebug_signpost_start(10, 0, 0, 0, 0);

 [self loadAssets];

 kdebug_signpost_end(10, 0, 0, 0, 0);

}

States or actions
Regions of Interest

Indicate an interesting range of time
Arbitrary code
Four integer/pointer arguments at start and end

// Timing an activity (code 10 - "Start Up")

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 kdebug_signpost_start(10, 0, 0, 0, 0);

 [self loadAssets];

 kdebug_signpost_end(10, 0, 0, 0, 0);

}

States or actions
Regions of Interest

Indicate an interesting range of time
Arbitrary code
Four integer/pointer arguments at start and end

// Timing an activity (code 10 - "Start Up")

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 kdebug_signpost_start(10, 0, 0, 0, 0);

 [self loadAssets];

 kdebug_signpost_end(10, 0, 0, 0, 0);

}

Matching rule: Code and First Argument
Points of Interest

Concurrent
Asynchronous

// Start the download (code 20 - "URL Download")

- (NSURLSessionDownloadTask *)startURLDownload: (NSURL *) url {

 NSURLSessionDownloadTask *dlTask = [_urlSession downloadTaskWithURL:url];

 kdebug_signpost_start(20, (uintptr_t)dlTask, 0, 0, 0);

 [dlTask resume];

 return dlTask;

}

- (void)URLSession:(NSURLSession *)session task:(NSURLSessionTask *)dlTask  
 didCompleteWithError:(nullable NSError *)error {

 kdebug_signpost_end(20, (uintptr_t)dlTask, 0, 0, 0);

}

NEW

Matching rule: Code and First Argument
Points of Interest

Concurrent
Asynchronous

// Start the download (code 20 - "URL Download")

- (NSURLSessionDownloadTask *)startURLDownload: (NSURL *) url {

 NSURLSessionDownloadTask *dlTask = [_urlSession downloadTaskWithURL:url];

 kdebug_signpost_start(20, (uintptr_t)dlTask, 0, 0, 0);

 [dlTask resume];

 return dlTask;

}

- (void)URLSession:(NSURLSession *)session task:(NSURLSessionTask *)dlTask  
 didCompleteWithError:(nullable NSError *)error {

 kdebug_signpost_end(20, (uintptr_t)dlTask, 0, 0, 0);

}

NEW

Matching rule: Code and Thread
Points of Interest

Concurrent
"Loop" timing

NEW

// Timing concurrent "loops" (code 30 - "Loading Chunk")

- (void)loadAssets {

 dispatch_apply(4, dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0), ^(size_t i) {

 kdebug_signpost_start(30, 0, 0, 0, 0);

 _loadAssetChunk(i);

 kdebug_signpost_end(30, 0, 0, 0, 0);

 });

}

Matching rule: Code and Thread
Points of Interest

Concurrent
"Loop" timing

NEW

// Timing concurrent "loops" (code 30 - "Loading Chunk")

- (void)loadAssets {

 dispatch_apply(4, dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0), ^(size_t i) {

 kdebug_signpost_start(30, 0, 0, 0, 0);

 _loadAssetChunk(i);

 kdebug_signpost_end(30, 0, 0, 0, 0);

 });

}

Matching rule: Code and Thread
Points of Interest

Concurrent
"Loop" timing

NEW

// Timing concurrent "loops" (code 30 - "Loading Chunk")

- (void)loadAssets {

 dispatch_apply(4, dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0), ^(size_t i) {

 kdebug_signpost_start(30, 0, 0, 0, 0);

 _loadAssetChunk(i);

 kdebug_signpost_end(30, 0, 0, 0, 0);

 });

}

Color using last argument
Points of Interest

Pass/Fail
Frame overrun
Differentiation

NEW

// Color by last argument

// 0 - Blue, 1 - Green, 2 - Purple, 3 - Orange, 4 - Red

-(void)URLSession:(NSURLSession *)session task:(NSURLSessionTask *)task  

 didCompleteWithError:(nullable NSError *)error {

 kdebug_signpost_end(20,(uintptr_t)task, 0, 0, (error) ? 4 : 1);

}

Color using last argument
Points of Interest

Pass/Fail
Frame overrun
Differentiation

NEW

// Color by last argument

// 0 - Blue, 1 - Green, 2 - Purple, 3 - Orange, 4 - Red

-(void)URLSession:(NSURLSession *)session task:(NSURLSessionTask *)task  

 didCompleteWithError:(nullable NSError *)error {

 kdebug_signpost_end(20,(uintptr_t)task, 0, 0, (error) ? 4 : 1);

}

Color using last argument
Points of Interest

Pass/Fail
Frame overrun
Differentiation

NEW

// Color by last argument

// 0 - Blue, 1 - Green, 2 - Purple, 3 - Orange, 4 - Red

-(void)URLSession:(NSURLSession *)session task:(NSURLSessionTask *)task  

 didCompleteWithError:(nullable NSError *)error {

 kdebug_signpost_end(20,(uintptr_t)task, 0, 0, (error) ? 4 : 1);

}

Correlation
Points of Interest NEW

Correlation
Points of Interest NEW

A legacy, reborn
Graphasaurus 2

Real world problems
New graphing style
Time profiled
Needs parallelism
• 5 ms per row
• Four rows
• 20 ms > 16 ms (60 fps)

Demo
Graphasaurus 2

Joe Grzywacz

A side effect of system load
Lock Contention

Running
Lock Contention

Blocking
Lock Contention

Runnable
Lock Contention

Overhead
Lock Contention

Overhead
Lock Contention

Overhead
Lock Contention

Only 82% in Running

Fixed
Lock Contention

Fixed
Lock Contention

100% in Running

Preempted

Preempted

Involuntary
• Priority decayed
• High priority work runnable

Preempted

Involuntary
• Priority decayed
• High priority work runnable

Voluntary
• Spin locks
• thread_switch

Preempted

Involuntary
• Priority decayed
• High priority work runnable

Voluntary
• Spin locks
• thread_switch

Preempted

Involuntary
• Priority decayed
• High priority work runnable

Voluntary
• Spin locks
• thread_switch

Interrupted

Interrupt handler
Priority doesn’t matter
Brief

System Load NEW

System Load NEW

System Load NEW

System Load NEW

User Interactive Load Average

Average active threads over a 10 ms period
Priority >= 33
User Interactive Class (QoS)
Orange when load exceeds hardware

NEW

Demo
Priorities

Joe Grzywacz

Prioritizing your threads
Quality of Service

Prioritizing your threads
Quality of Service

Prioritizing your threads
Quality of Service

Prioritizing your threads
Quality of Service

Prioritizing your threads
Quality of Service

Attribute of blocks, queues, threads
Constrains the priority range
Throttles I/O
Throttles CPU frequency

Faults
Virtual Memory

Affect performance
Worse under a load
Manageable

Has the tools
System Trace

Has the tools
System Trace

Fault on Access

Allocations are quick
First access causes fault

Resolved Inline

No explicit call
Access any byte in the page
Just-in-time mapping to physical memory

Mitigation

Mitigation

Absorb them
• Leave room for faulting in your budget
• More resilient under a load

Mitigation

Absorb them
• Leave room for faulting in your budget
• More resilient under a load

Fault pages on a background thread
• dispatch_async
• Avoids stutters when showing new content

Summary

Companion to the Time Profiler
Applications that scale well under heavy loads
Try it out on your app
Many new features in Instruments 8

More Information

https://developer.apple.com/wwdc16/411

Related Sessions

Optimizing App Startup Time Mission Wednesday 10:00AM

Using Time Profiler in Intruments Nob Hill Friday 3:00PM

Concurrent Programming with GCD in Swift 3 Pacific Heights Friday 4:00PM

Labs

System Trace Q&A Lab Fort Mason Thursday 10:00PM

Xcode Open Hours Developer Tools Lab C Thursday 12:00PM

Profiling and Debugging Lab Developer Tools Lab C Friday 3:00PM

Xcode Open Hours Developer Tools Lab B Friday 3:00PM

