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Multi-core

Get more done
System load changes performance
High system load increases
• Preemption
• Lock contention
• Virtual memory activity
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System Trace for Apps
Using System Trace
• Theading
• Signposts
• Virtual Memory
• Best Practices
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System Trace

Records a kernel trace
• Scheduling activity
• System calls
• Virtual memory operations

Windowed Mode in Instruments 8
• Keeps last ~5 sec of data
• Gives you more time to reproduce

5 sec

Time

NEW
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Points of Interest

You tell Instruments what’s interesting
Signposts
Classic:

iOS 10 / macOS Sierra / tvOS 10/ watchOS 3:

NEW

syscall(SYS_kdebug_trace, ...)

kdebug_signpost 
kdebug_signpost_start 
kdebug_signpost_end



Events
Points of Interest

Indicate an interesting point in time
Arbitrary code (0 - 16383)
4 uintptr_t arguments

// Point of Interest 

func mouseDown(_ event: NSEvent) { 

    // Emit a signpost for Instruments 

    kdebug_signpost(5, 0, 0, 0, 0) 

     

} 
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States or actions
Regions of Interest

Indicate an interesting range of time
Arbitrary code
Four integer/pointer arguments at start and end

// Timing an activity (code 10 - "Start Up") 

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification 

{ 

    kdebug_signpost_start(10, 0, 0, 0, 0); 

    [self loadAssets]; 

    kdebug_signpost_end(10, 0, 0, 0, 0); 

} 
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Matching rule: Code and First Argument
Points of Interest

Concurrent
Asynchronous

// Start the download (code 20 - "URL Download") 

- (NSURLSessionDownloadTask *)startURLDownload: (NSURL *) url { 

    NSURLSessionDownloadTask *dlTask = [_urlSession downloadTaskWithURL:url]; 

    kdebug_signpost_start(20, (uintptr_t)dlTask, 0, 0, 0); 

    [dlTask resume]; 

    return dlTask; 

} 

- (void)URLSession:(NSURLSession *)session task:(NSURLSessionTask *)dlTask  
                           didCompleteWithError:(nullable NSError *)error { 

    kdebug_signpost_end(20, (uintptr_t)dlTask, 0, 0, 0); 

}

NEW
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Matching rule: Code and Thread
Points of Interest

Concurrent
"Loop" timing

NEW

// Timing concurrent "loops" (code 30 - "Loading Chunk") 

- (void)loadAssets { 

    dispatch_apply(4, dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0), ^(size_t i) { 

        kdebug_signpost_start(30, 0, 0, 0, 0); 

       _loadAssetChunk(i); 

        kdebug_signpost_end(30, 0, 0, 0, 0); 

    }); 

} 
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Color using last argument
Points of Interest

Pass/Fail
Frame overrun
Differentiation

NEW

// Color by last argument 

// 0 - Blue, 1 - Green, 2 - Purple, 3 - Orange, 4 - Red 

-(void)URLSession:(NSURLSession *)session task:(NSURLSessionTask *)task  

                          didCompleteWithError:(nullable NSError *)error { 

    kdebug_signpost_end(20,(uintptr_t)task, 0, 0, (error) ? 4 : 1); 

} 
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A legacy, reborn
Graphasaurus 2

Real world problems
New graphing style
Time profiled
Needs parallelism
• 5 ms per row
• Four rows
• 20 ms > 16 ms (60 fps)



Demo
Graphasaurus 2

Joe Grzywacz



A side effect of system load
Lock Contention
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Runnable
Lock Contention
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Only 82% in Running
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Fixed
Lock Contention

100% in Running
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Voluntary
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Interrupted

Interrupt handler
Priority doesn’t matter
Brief
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User Interactive Load Average

Average active threads over a 10 ms period
Priority >= 33
User Interactive Class (QoS)
Orange when load exceeds hardware

NEW





Demo
Priorities

Joe Grzywacz
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Quality of Service
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Prioritizing your threads
Quality of Service

Attribute of blocks, queues, threads
Constrains the priority range
Throttles I/O
Throttles CPU frequency



Faults
Virtual Memory

Affect performance
Worse under a load
Manageable
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Fault on Access

Allocations are quick 
First access causes fault



Resolved Inline

No explicit call
Access any byte in the page
Just-in-time mapping to physical memory
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Absorb them
• Leave room for faulting in your budget
• More resilient under a load



Mitigation

Absorb them
• Leave room for faulting in your budget
• More resilient under a load

Fault pages on a background thread
• dispatch_async
• Avoids stutters when showing new content



Summary

Companion to the Time Profiler 
Applications that scale well under heavy loads
Try it out on your app
Many new features in Instruments 8



More Information

https://developer.apple.com/wwdc16/411



Related Sessions

Optimizing App Startup Time Mission Wednesday 10:00AM

Using Time Profiler in Intruments Nob Hill Friday 3:00PM

Concurrent Programming with GCD in Swift 3 Pacific Heights Friday 4:00PM



Labs

System Trace Q&A Lab Fort Mason Thursday 10:00PM

Xcode Open Hours Developer Tools Lab C Thursday 12:00PM

Profiling and Debugging Lab Developer Tools Lab C Friday 3:00PM

Xcode Open Hours Developer Tools Lab B Friday 3:00PM




