
© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC15

Your App and 
Next Generation Networks

Prabhakar Lakhera Core OS Networking Engineer
Stuart Cheshire  DEST

System Frameworks

Session 719



Part One
Transitioning to IPv6-Only Networks

Part Two
Reducing Delays in Networking



Transitioning to IPv6-Only Networks



IPv4 Server

IPv4 Access 
Connectivity

Cellular Data Network



IPv4 Server

IPv4 Access 
Connectivity
IPv4 Access  

Connectivity 
with NAT

Cellular Data Network



IPv4 Server

IPv4 Access 
Connectivity
IPv4 Access  

Connectivity 
with NAT

IPv6 Server

IPv6 Access 
Connectivity

Cellular Data Network



Cellular Data Network

25%

50%

75%

Jun, 2012 Mar, 2013 Dec, 2013 Sep, 2014 May, 2015

Verizon
AT&T
T-Mobile



IPv4 Server

IPv4 Access  
Connectivity 

with NAT

Cellular Data Network

IPv6 Server

IPv6 Access 
Connectivity



IPv4 Server

Cellular Data Network

IPv6 Server

IPv6 Access 
Connectivity



IPv4 Server

Cellular Data Network

DNS64
NAT64

IPv6 Server

IPv6 Access 
Connectivity



IPv4 Server

Cellular Data Network

DNS64
NAT64

IPv6 Server

IPv6 Access 
Connectivity

DNS64 synthesizes IPv6 address for IPv4 server



IPv4 Server

Cellular Data Network

DNS64
NAT64

IPv6 Server

IPv6 Access 
Connectivity

DNS64 synthesizes IPv6 address for IPv4 server
NAT64 performs IPv6 to IPv4 address translation



Your App Has To Be IPv6 Ready
It will be an app submission requirement later this year!



Step 1 
Option Click 

Sharing



Step 1 
Option Click 

Sharing

Step 2 
Option Click 

Internet Sharing

Step 3 
Turn on NAT64



Step 1 
Option Click 

Sharing

Step 2 
Option Click 

Internet Sharing

Step 3 
Turn on NAT64



NAT64 + DNS64 Internet Sharing

IPv4 WAN

IPv6 Access 
Connectivity

DNS64
NAT64



Make NAT64 Testing  
Part of Your Regular 

Development Process



Top 100 Free iOS Applications

30%

70%

IPv6-Savvy Apps

IPv4-Only Apps

* Results for Top 100 Free iOS Applications that need Networking



What Breaks?
IPv4-only code

IPv4-only storage objects:    uint32_t,   in_addr,   sockaddr_in
IPv4-only APIs:       inet_aton,   gethostbyname
IPv4-only usage of an API:    gethostbyname2(hostname, AF_INET);

Pre-flight checks before connecting
• Checking if device has an IPv4 address
• Checking for reachability to 0.0.0.0











What Works?
Address-family agnostic code

Connect without pre-flight
• If connection succeeds, great
• If connection fails, handle that gracefully

Use higher-layer networking frameworks
• NSURLSession and CFNetwork-layer APIs

RFC 4038 “Application Aspects of IPv6 Transition”
Connect-by-name APIs



What Works?
IPv4 address literals, in NAT64 + DNS64 networks

New for OS X 10.11 and iOS 9
Use higher-layer networking frameworks
• NSURLSession and CFNetwork-layer APIs

Client supplies IPv4 address Literal
• OS synthesizes IPv6 address



Reducing Delays in Networking



Delay Reduction



Delay Reduction

Reliable Network Fallback

Explicit Congestion Notification

TCP_NOTSENT_LOWAT

TCP Fast Open



Delay Reduction
Reliable Network Fallback 

Reduce Connection Setup Stalls

Explicit Congestion Notification

TCP_NOTSENT_LOWAT

TCP Fast Open



Reliable Network Fallback

Fringe of Wi-Fi
TCP connection not succeeding
OS initiates parallel connection over mobile data
First to complete wins—like RFC 6555 (Happy Eyeballs)



Reliable Network Fallback

Fully automatic
No more bill shock
Use NSURLSession and CFNetwork-layer APIs
For best user experience:
• Better Route Notification

Networking with NSURLSession Pacific Heights Thursday 9:00AM



Delay Reduction
Reliable Network Fallback 

Reduce Connection Setup Stalls

Explicit Congestion Notification 
Reduce Network Delays

TCP_NOTSENT_LOWAT

TCP Fast Open



Test: 10Mb/s Downstream

256kB FIFO queue with Tail Drop
vs.

CoDel with ECN

Gateway Device: CeroWRT 3.10.18-1
(< 1 ms intrinsic delay, so any delay is self-induced queueing delay)



tcptrace
http://www.tcptrace.org/

http://www.tcptrace.org/








Data Packet



Data Packet

Cumulative 
Acknowledgement 

Line



Data Packet

Cumulative 
Acknowledgement 

Line

Receive Window Ceiling













Standard FIFO Queue



Standard FIFO Queue



Standard FIFO Queue



Standard FIFO Queue



Standard FIFO Queue



Standard FIFO Queue



Standard FIFO Queue



Standard FIFO Queue



Smart Queueing and ECN

CoDel
• Controlled Delay queueing
• Limits Bufferbloat

Explicit Congestion Notification
• Signals congestion by marking packets instead of discarding
• Available in OS X, iOS, Windows, Linux, etc.



CoDel with ECN





CoDel with ECN



CoDel with ECN



Conclusions

CoDel (or similar Smart Queue Management) helps
ECN helps
SQM+ECN really helps a lot



TCP for Streaming Video

Packet loss causes irregular data delivery to client
No problem for file transfer (e.g. sending an email)
Big problem for streaming video over TCP
• YouTube
• Netflix
• etc.



Changing Applications

Fixed data: Email, file transfer, etc.
• Fixed data
• Variable time (as fast as network can manage)

Adaptive data: Screen Sharing, Video Streaming, etc.
• Fixed time
• Variable data (as much as network can carry in allotted time)



Current State of ECN

Servers
• 56% of Alexa top million web sites already support ECN
• http://wan.poly.edu/pam2015/papers/4.pdf

Clients
• Routers aren’t doing marking
• Some routers might drop the packets—small risk; no reward

Routers
• Clients aren’t requesting ECN
• Enabling ECN might expose code bugs—small risk; no reward



Apple Is Taking the Initiative

ECN now enabled in OS X 10.11 and iOS 9
Test on your own home and work networks
Report bugs to Apple
We could have a billion iOS devices using ECN!
Finally, an incentive for ISPs to start offering ECN packet marking
All apps get this for free



Delay Reduction
Reliable Network Fallback 

Reduce Connection Setup Stalls

Explicit Congestion Notification 
Reduce Network Delays

TCP_NOTSENT_LOWAT 
Reduce Sender-Side Delay

TCP Fast Open



Screen Sharing

Screen Sharing to home Mac over DSL
5 Mb/s downlink, 500 kb/s uplink
3-second delay on Screen Sharing
But ping time is 35 ms
Huh?



Socket Send Buffer

Socket Send Buffer is 128 kilobytes
Need send buffer large enough to hold 
Bandwidth-Delay Product (BDP)
Any additional buffering just adds extra delay
At approximately 50 kB/sec transfer rate 
128 kilobytes = 2.5 seconds of delay



Socket Send Buffer

Data in flight

Data waiting to be sent

BDP



Socket Send Buffer

At approximately 50 kB/sec transfer rate
128 kilobytes = 2.5 seconds
Delay is in host, not just the network
Do screen frames have to be aged in oak barrels before they’re fit for consumption?



TCP_NOTSENT_LOWAT

setsockopt(skt, IPPROTO_TCP,   TCP_NOTSENT_LOWAT,   &threshold, sizeof(threshold));
Socket Send Buffer remains at 128 kilobytes
But kevent() doesn’t report socket as writable until the unsent TCP data drops 
below specified threshold (typically 8 kilobytes)
Application then writes next single semantic unit of data



TCP_NOTSENT_LOWAT

setsockopt(skt, IPPROTO_TCP,   TCP_NOTSENT_LOWAT,   &threshold, sizeof(threshold));
Socket Send Buffer remains at 128 kilobytes
But kevent() doesn’t report socket as writable until the unsent TCP data drops 
below specified threshold (typically 8 kilobytes)
Application then writes next single semantic unit of data



Socket Send Buffer

Data waiting to be sent
Data in flightBDP



Buffer Reaches Threshold

Data waiting to be sent
Data in flightBDP



Application Sends Next Chunk

Data waiting to be sent

Data in flightBDP

Write One Atomic Semantic Unit



Demo



TCP_NOTSENT_LOWAT

Screen Sharing now using this in 10.10.3 and later
Used by AirPlay
Available in Linux too, for your server software



Good for All Applications

Obvious benefit for “real time” applications
• But all applications benefit

Use the NSURLSession and CFNetwork-layer APIs
When runloop reports socket is writable:
• Write a single semantic atomic chunk
• Don’t loop until EWOULDBLOCK



Delay Reduction
Reliable Network Fallback 

Reduce Connection Setup Stalls

Explicit Congestion Notification 
Reduce Network Delays

TCP_NOTSENT_LOWAT 
Reduce Sender-Side Delay

TCP Fast Open 
Accelerating the TCP handshake



TCP Fast Open
Accelerating the TCP handshake

TCP handshake takes one round-trip-time
Handshake

Time



TCP Fast Open
Accelerating the TCP handshake

TCP handshake takes one round-trip-time

Data can only be sent afterwards

Handshake

Data

Time



TCP Fast Open
Accelerating the TCP handshake

TCP Fast Open

Handshake + Data

TCP Fast Open
• Combines the handshake with data
• 50% latency reduction for short flows
• Secured through Cookie-exchange
• Only for “idempotent” data

Time



TCP Fast Open Only for Idempotent Data

Time

Handshake + Data

Server acts and replies



TCP Fast Open Only for Idempotent Data

Time

Handshake + Data

Server acts and replies

Server acts and replies again



TCP Fast Open
How to use it?

• Socket API
- Using connectx() system call to combine handshake with data:
connectx(fd, ..., DATA_IDEMPOTENT | CONNECT_RESUME_ON_READ_WRITE, ...); // SYN delayed 
write(fd, ...);                                // SYN goes out with first data segment 

• Server-side
- Must support TFO and application has to opt-in
- iOS/OS X: Socket-option TCP_FASTOPEN
- Linux (requires v4.1+)



Summary

Use NSURLSession and CFNetwork-layer APIs
Test on NAT64 + DNS64 network
Reliable Network Fallback
• Better Route notifications

Explicit Congestion Notification
TCP_NOTSENT_LOWAT
• Don’t over-stuff

TCP Fast Open technology preview



More Information

Documentation and Videos
Networking Programming Topics
https://developer.apple.com/library/ios/documentation/ 
NetworkingInternet/Conceptual/NetworkingTopics/Introduction/Introduction.html

CFNetwork
https://developer.apple.com/library/mac/documentation/ 
Networking/Conceptual/CFNetwork/Introduction/Introduction.html

NSURLSession
https://developer.apple.com/library/ios/documentation/ 
Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html#//apple_ref/doc/uid/
10000165-BCICJDHA



More Information

Technical Support
Apple Developer Forums
http://developer.apple.com/forums  

Developer Technical Support
http://developer.apple.com/support/technical

General Inquiries
Paul Danbold, Core OS Evangelist
danbold@apple.com

http://developer.apple.com/forums
mailto:danbold@apple.com


Related Sessions

Networking with NSURLSession Pacific Heights Thursday 9:00AM

What's New in Network Extension and VPN Nob Hill Friday 9:00AM



Related Sessions

Networking Lab Frameworks Lab E Friday 1:30PM




