
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

Power, Performance, and Diagnostics
What's new in GCD and XPC

Session 716
Daniel Steffen
Darwin Runtime Engineer

Core OS

Overview

Background

Quality of Service Classes

New QoS and GCD API

Propagation of QoS and Execution Context

Diagnostics and Queue Debugging

Grand Central Dispatch

Asynchronous execution

Concurrent execution

Synchronization

Asynchronous Execution

Asynchronous Execution
GCD

Run code in separate environment  
in same process

Asynchronous Execution
GCD

Run code in separate environment  
in same process
• Avoid interfering with current thread

• Different priority level

• Coordination between multiple clients

Asynchronous Execution
XPC

Run code in separate process

• Avoid interfering with current process

• Different privilege level

• Coordination between multiple clients

Asynchronous Execution
XPC

Run code in separate process

• Introducing Blocks and Grand Central Dispatch on iPhone WWDC 2010

• Simplifying iPhone App Development with Grand Central Dispatch WWDC 2010

• Introducing XPC WWDC 2011

• Blocks and Grand Central Dispatch in Practice WWDC 2011

• Mastering Grand Central Dispatch WWDC 2011

• Asynchronous Design Patterns with Blocks, GCD, and XPC WWDC 2012

• Efficient Design with XPC WWDC 2013

Previously…
On developer.apple.com

The Big Picture

Primary Goal

Provide best user experience

Primary Goal

Provide best user experience

What is important to user?

Primary Goal

Provide best user experience

What is important to user?
• Frontmost app

• Responsive user interface

Responsive User Interface

Responsive User Interface

Ensure resource availability for
• Main thread of frontmost app

- UI event handling

- UI drawing

• OS User Interface infrastructure

Responsive User Interface

Other work should execute
• Off main thread

• Independently

• At lower priority

Priorities

Priorities

Resolving resource contention

Priorities

Resolving resource contention

Under contention
• High priorities win

Priorities

Resolving resource contention

Under contention
• High priorities win

No contention
• Low priorities have no restriction

Scheduling Priority

Kernel scheduler
• High priorities get CPU first

• Low priorities

- No restriction if no contention

- May not run during UI activity

I/O Priority

Background queue

Low priority I/O
• No restriction if no high priority  

I/O present

• Otherwise deprioritized

Priorities

Many other resource controls

Complex configuration

No unified approach

No clear expression of intent

Quality of Service Classes

Quality of Service Classes

Communicate developer intent

Explicit classification of work

Single abstract parameter
• Move away from dictating specific

configuration values

Quality of Service Classes
Effects

CPU scheduling priority

I/O priority

Timer coalescing

CPU throughput vs. efficiency

More…

Quality of Service Classes
Effects

CPU scheduling priority

I/O priority

Timer coalescing

CPU throughput vs. efficiency

More…

Configuration values tuned for each platform/device

QoS Classes

User-InitiatedUser-Interactive Utility Background

UI IN UT BG

User-Interactive

UI thread

Directly involved in
• Event handling

• UI drawing

Small fraction of total work
UI

User-Initiated

Asynchronous to UI

Directly UI-initiated

User waiting for immediate results

Required to continue user interaction IN

Utility

Long-running with user-visible progress
• Computation, I/O, networking

Ongoing data feed to UI

Getting ready for next UI request

Energy efficient
UT

Background

User is unaware work is occurring

Prefetching

Deferrable

Maintenance BG

Choosing QoS Class

User Interactive Is this work actively involved in updating the UI?

User Initiated Is this work required to continue user interaction?

Utility Is the user aware of the progress of this work?

Background Can this work be deferred to start at a better time?

UT

IN

UI

BG

Choosing QoS Class

User Interactive Is this work actively involved in updating the UI?

User Initiated Is this work required to continue user interaction?

Utility Is the user aware of the progress of this work?

Background Can this work be deferred to start at a better time?

UT

IN

UI

BG

Choosing QoS Class

User Interactive Is this work actively involved in updating the UI?

User Initiated Is this work required to continue user interaction?

Utility Is the user aware of the progress of this work?

Background Can this work be deferred to start at a better time?

UT

IN

UI

BG

Choosing QoS Class

User Interactive Is this work actively involved in updating the UI?

User Initiated Is this work required to continue user interaction?

Utility Is the user aware of the progress of this work?

Background Can this work be deferred to start at a better time?

UT

IN

UI

BG

Choosing QoS Class

User Interactive Is this work actively involved in updating the UI?

User Initiated Is this work required to continue user interaction?

Utility Is the user aware of the progress of this work?

Background Can this work be deferred to start at a better time?

UT

IN

UI

BG

Choosing QoS Class

User Interactive Is it okay for User Interactive work to happen before my work?

User Initiated Is it okay for this work to compete with other User Initiated work?

Utility Is it okay for my work to take precedence over Utility work?

Background

UT

IN

UI

BG

Choosing QoS Class

User Interactive Is it okay for User Interactive work to happen before my work?

User Initiated Is it okay for this work to compete with other User Initiated work?

Utility Is it okay for my work to take precedence over Utility work?

Background

UT

IN

UI

BG

Choosing QoS Class

User Interactive Is it okay for User Interactive work to happen before my work?

User Initiated Is it okay for this work to compete with other User Initiated work?

Utility Is it okay for my work to take precedence over Utility work?

Background

UT

IN

UI

BG

Recap

Responsive User Interface
• Asynchronous execution at correct priority

• Had no unified way to express intent

Quality of Service Classes
• Explicit abstract classification of work

• Questions for choosing QoS

QoS Class API

QoS Class
Can be specified on

Threads

Dispatch Queues

Dispatch Blocks

NSOperationQueue/NSOperation

Processes

QoS Class Constants

sys/qos.h

QOS_CLASS_USER_INTERACTIVE

QOS_CLASS_USER_INITIATED

QOS_CLASS_UTILITY

QOS_CLASS_BACKGROUND

Foundation.h

NSQualityOfServiceUserInteractive

NSQualityOfServiceUserInitiated

NSQualityOfServiceUtility

NSQualityOfServiceBackground

UI

IN

UT

BG

QoS Class Constants

sys/qos.h

QOS_CLASS_USER_INTERACTIVE

QOS_CLASS_USER_INITIATED

QOS_CLASS_UTILITY

QOS_CLASS_BACKGROUND

Foundation.h

NSQualityOfServiceUserInteractive

NSQualityOfServiceUserInitiated

NSQualityOfServiceUtility

NSQualityOfServiceBackground

QOS_CLASS_DEFAULT

QOS_CLASS_UNSPECIFIED

UI

IN

UT

BG

DF

Special QoS Class Values

QOS_CLASS_DEFAULT
• No specific QoS information was available

• Ordered between UI and non-UI QoS

• Thread and global queue default

• Not intended as a work classification

User Interactive

User Initiated

Default

Utility

Background

IN

UI

BG

UT

DF

Special QoS Class Values

QOS_CLASS_UNSPECIFIED
• No QoS specification at given level

• QoS should be inferred from work origin

• Returned after legacy API QoS opt-out

QoS Relative Priority

Relative position within a QoS Class band

QoS Relative Priority

Relative position within a QoS Class band UI

IN

UT

BG

DF

QoS Relative Priority

Relative position within a QoS Class band UI

IN

UT

BG

DF

QoS Relative Priority

Relative position within a QoS Class band

Lower than default

0

-15

UI

IN

UT

BG

DF

QoS Relative Priority

Relative position within a QoS Class band

Lower than default

Intended for unusual situations

0

-15

UI

IN

UT

BG

DF

• Interdependent work within same QoS
class with differing priority

• Producer/Consumer scenarios

Thread QoS API

Thread QoS Getters

QoS Class of current thread
qos = qos_class_self();

!

Initial QoS Class of main thread
qos = qos_class_main();

Thread QoS Getters

QoS Class of current thread
qos = qos_class_self();

!

Initial QoS Class of main thread
qos = qos_class_main();

Thread QoS Getters

QoS Class of current thread
qos = qos_class_self();

!

Initial QoS Class of main thread
qos = qos_class_main();

Process Type Main QoS

App User-Interactive

XPC Service Default

GCD QoS API

Global Queues

QoS Class Global Queue

User Interactive Main

User Initiated High priority concurrent

Default Default priority concurrent

Utility Low priority concurrent

Background Background priority concurrent

UT

IN

UI

BG

DF

Global Queues

QoS Class Global Queue

User Interactive Main

User Initiated High priority concurrent

Default Default priority concurrent

Utility Low priority concurrent

Background Background priority concurrent

UT

IN

UI

BG

DF

Global Queues with QoS

Get a global concurrent queue with QoS Class
queue = dispatch_get_global_queue(QOS_CLASS_UTILITY, 0);

!

Get QoS Class of a queue
qos = dispatch_queue_get_qos_class(queue, &relative);

Global Queues with QoS

Get a global concurrent queue with QoS Class
queue = dispatch_get_global_queue(QOS_CLASS_UTILITY, 0);

!

Get QoS Class of a queue
qos = dispatch_queue_get_qos_class(queue, &relative);

Global Queues with QoS

Get a global concurrent queue with QoS Class
queue = dispatch_get_global_queue(QOS_CLASS_UTILITY, 0);

!

Get QoS Class of a queue
qos = dispatch_queue_get_qos_class(queue, &relative);

Queue QoS API

Get QoS queue attribute:
qos_attr = dispatch_queue_attr_make_with_qos_class(
 attr, QOS_CLASS_UTILITY, 0);

Queue QoS API

Get QoS queue attribute:
qos_attr = dispatch_queue_attr_make_with_qos_class(
 attr, QOS_CLASS_UTILITY, 0);

Queue QoS API

Get QoS queue attribute:
qos_attr = dispatch_queue_attr_make_with_qos_class(
 attr, QOS_CLASS_UTILITY, 0);
!

queue = dispatch_queue_create(“com.my.utility”, qos_attr);

Dispatch Block Objects

Dispatch Block Objects

Configure properties of individual units of work on a queue

Dispatch Block Objects

Configure properties of individual units of work on a queue

Address individual workunits for
• Wait for completion

• Completion notification

• Cancellation

Dispatch Block Objects

Configure properties of individual units of work on a queue

Address individual workunits for
• Wait for completion

• Completion notification

• Cancellation

Integrate with existing API

Dispatch Block Objects
Wrapper Block

Created from an existing GCD Block
• dispatch_block_t

^{…}

Dispatch Block Objects
Wrapper Block

Created from an existing GCD Block
• dispatch_block_t

Additional configuration
• QoS Class

• Flags
^{…}

Dispatch Block Objects
Wrapper Block

Created from an existing GCD Block
• dispatch_block_t

Additional configuration
• QoS Class

• Flags

Heap object
• Block_release()

^{…}

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create(0, ^{
 NSLog(@“Hello World!”);
});
!

dispatch_async(queue, block);
!

// Do some work
!

dispatch_wait(block, DISPATCH_TIME_FOREVER);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create(0, ^{
 NSLog(@“Hello World!”);
});
!

dispatch_async(queue, block);
!

// Do some work
!

dispatch_wait(block, DISPATCH_TIME_FOREVER);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create(0, ^{
 NSLog(@“Hello World!”);
});
!

dispatch_async(queue, block);
!

// Do some work
!

dispatch_wait(block, DISPATCH_TIME_FOREVER);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create(0, ^{
 NSLog(@“Hello World!”);
});
!

dispatch_async(queue, block);
!

// Do some work
!

dispatch_wait(block, DISPATCH_TIME_FOREVER);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create(0, ^{
 NSLog(@“Hello World!”);
});
!

dispatch_async(queue, block);
!

// Do some work
!

dispatch_wait(block, DISPATCH_TIME_FOREVER);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create(0, ^{
 NSLog(@“Hello World!”);
});
!

dispatch_async(queue, block);
!

// Do some work
!

dispatch_wait(block, DISPATCH_TIME_FOREVER);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create(0, ^{
 NSLog(@“Hello World!”);
});
!

dispatch_async(queue, block);
!

// Do some work
!

dispatch_wait(block, DISPATCH_TIME_FOREVER);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create_with_qos_class(
 0, QOS_CLASS_UTILITY, -8, ^{…});
!

dispatch_async(queue, block);
!

// Do some work
// Change your mind
!

dispatch_cancel(block);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create_with_qos_class(
 0, QOS_CLASS_UTILITY, -8, ^{…});
!

dispatch_async(queue, block);
!

// Do some work
// Change your mind
!

dispatch_cancel(block);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create_with_qos_class(
 0, QOS_CLASS_UTILITY, -8, ^{…});
!

dispatch_async(queue, block);
!

// Do some work
// Change your mind
!

dispatch_cancel(block);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create_with_qos_class(
 0, QOS_CLASS_UTILITY, -8, ^{…});
!

dispatch_async(queue, block);
!

// Do some work
// Change your mind
!

dispatch_cancel(block);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create_with_qos_class(
 0, QOS_CLASS_UTILITY, -8, ^{…});
!

dispatch_async(queue, block);
!

// Do some work
// Change your mind
!

dispatch_cancel(block);
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create(DISPATCH_BLOCK_DETACHED, ^{
 // Clean caches
});
!

dispatch_async(queue, block);
!

dispatch_notify(block, dispatch_get_main_queue(), ^{
 // Cleanup complete
});
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create(DISPATCH_BLOCK_DETACHED, ^{
 // Clean caches
});
!

dispatch_async(queue, block);
!

dispatch_notify(block, dispatch_get_main_queue(), ^{
 // Cleanup complete
});
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create(DISPATCH_BLOCK_DETACHED, ^{
 // Clean caches
});
!

dispatch_async(queue, block);
!

dispatch_notify(block, dispatch_get_main_queue(), ^{
 // Cleanup complete
});
!

Block_release(block);

GCD Block API

dispatch_block_t block;
!

block = dispatch_block_create(DISPATCH_BLOCK_DETACHED, ^{
 // Clean caches
});
!

dispatch_async(queue, block);
!

dispatch_notify(block, dispatch_get_main_queue(), ^{
 // Cleanup complete
});
!

Block_release(block);

Interaction of QoS Specifications

Interaction of Multiple QoS Specifications
Asynchronous Blocks

Default to QoS class of queue
• Or inherited from immediate global target queue

Interaction of Multiple QoS Specifications
Asynchronous Blocks

Default to QoS class of queue
• Or inherited from immediate global target queue

If neither are specified
• Use Block QoS class

• Or QoS inferred from submitting thread

Interaction of Multiple QoS Specifications
Inferred QoS

QoS captured at the time of block submission
• User Interactive translated to User Initiated

Interaction of Multiple QoS Specifications
Inferred QoS

QoS captured at the time of block submission
• User Interactive translated to User Initiated

Intended for use on queues
• Without specific identity or single purpose

• Mediating between many different clients

Interaction of Multiple QoS Specifications
Synchronous Blocks

Default to QoS class of Block
• Or current thread

• Will only raise QoS

Interaction of Multiple QoS Specifications
Explicit control

DISPATCH_BLOCK_INHERIT_QOS_CLASS
• Prefer queue/thread QoS

!

DISPATCH_BLOCK_ENFORCE_QOS_CLASS
• Prefer Block QoS

• Only if higher than queue/thread QoS

Interaction of Multiple QoS Specifications
Explicit control

DISPATCH_BLOCK_INHERIT_QOS_CLASS
• Prefer queue/thread QoS

!

DISPATCH_BLOCK_ENFORCE_QOS_CLASS
• Prefer Block QoS

• Only if higher than queue/thread QoS

Priority Inversions

Priority Inversion

Progress of high-priority work depends on
• Results of low-priority work

• Resource held by low-priority work

Priority Inversion

Progress of high-priority work depends on
• Results of low-priority work

• Resource held by low-priority work

High-priority threads are
• Blocking

• Spinning/polling

Waiting for low-priority threads

Priority Inversion
Synchronous

High QoS thread waiting on lower QoS work

Priority Inversion
Synchronous

High QoS thread waiting on lower QoS work

System will attempt to automatically resolve inversion for

• dispatch_sync() and dispatch_wait() of blocks on serial queues
• pthread_mutex_lock()

QoS of work is raised for the duration of the wait

Priority Inversion
Asynchronous

High QoS Block submitted to serial queue
• Created with lower QoS

• Containing Blocks with lower QoS

Priority Inversion
Asynchronous

High QoS Block submitted to serial queue
• Created with lower QoS

• Containing Blocks with lower QoS

System will attempt to automatically resolve inversion

QoS of queue is raised until high QoS Block is reached

Avoiding Priority Inversions

Decouple shared data as much as possible
• Use finer grained synchronization

• Move work outside of lock/serial queue

Avoiding Priority Inversions

Decouple shared data as much as possible
• Use finer grained synchronization

• Move work outside of lock/serial queue

Prefer asynchronous execution over synchronous waiting

Avoiding Priority Inversions

Decouple shared data as much as possible
• Use finer grained synchronization

• Move work outside of lock/serial queue

Prefer asynchronous execution over synchronous waiting

Avoid spinning/polling
• Look out for timer-based “synchronization”

Recap

QoS Class constants

QoS relative priority

Thread and queue QoS API

Dispatch Block API

Interaction of multiple QoS specifications

Priority Inversions

Propagation of Execution Context

Execution Context

Thread-local attributes maintained by system
• Activity ID

• Properties of current IPC request

- Originator

- Importance

- More…

Execution Context
Automatic propagation

Execution Context
Automatic propagation

Propagated across threads
• GCD

• NSOperationQueue

• Foundation

Execution Context
Automatic propagation

Propagated across threads
• GCD

• NSOperationQueue

• Foundation

Propagated across processes
• XPC

• MIG

• CFMachPort

Process A

Automatic Propagation

Process A

Automatic Propagation

Q1

AID: 1

Q2

AID: 2

Process A

Automatic Propagation

Q1

AID: 1

Q2

AID: 2

Q3

AID: 1

Process A

Process B

Automatic Propagation

Q1

AID: 1

Q2

AID: 2

Q3

AID: 1

Q1

AID: 1

Process A

Process B

Automatic Propagation

Q1

AID: 1

Q2

AID: 2

Q3

AID: 1

Q1

AID: 1

Q2

AID: 1

Process A

Process B

Automatic Propagation

Q1

AID: 1

Q2

AID: 2

Q3

AID: 1

Q1

AID: 1

Q2

AID: 1

Q3

AID: 2

Propagation Control
Prevent propagation

DISPATCH_BLOCK_DETACHED
Work disassociated from principal activity
• Asynchronous, long-running cleanup

Propagation Control
Prevent propagation

DISPATCH_BLOCK_DETACHED
Work disassociated from principal activity
• Asynchronous, long-running cleanup

Detached by default
• Dispatch source handlers
• dispatch_after()

Detached Block

Q1

AID: 1

Detached Block

Q3

AID: 1

Q1

AID: 1

Detached Block

Q2 Q3

AID: 1

Q1

AID: 1

Detached Block

Q2

AID: 2

Q3

AID: 1

Q1

AID: 1

Propagation Control
Manual propagation

DISPATCH_BLOCK_ASSIGN_CURRENT
• Assigns current QoS Class and Execution Context

Propagation Control
Manual propagation

DISPATCH_BLOCK_ASSIGN_CURRENT
• Assigns current QoS Class and Execution Context

Store Block for later execution
• Direct call on manually created pthread

• Submission to dispatch queue

XPC
Propagation

XPC connections automatically propagate
• QoS Class

• Execution Context

XPC
Propagation

XPC connections automatically propagate
• QoS Class

• Execution Context

Capture of current state on sending thread

XPC
Propagation

XPC connections automatically propagate
• QoS Class

• Execution Context

Capture of current state on sending thread

XPC handlers prefer propagated QoS over queue QoS

XPC Service
Importance boosting

Initially clamped to Background QoS

Clamp removed during IPC with UI

XPC Service
Importance boosting

Initially clamped to Background QoS

Clamp removed during IPC with UI

Boost lifetime automatically handled by XPC
• Until reply is sent

• While using message

XPC Service
Importance boosting

Initially clamped to Background QoS

Clamp removed during IPC with UI

Boost lifetime automatically handled by XPC
• Until reply is sent

• While using message!

• While asynchronous work submitted from handler context is ongoing

- Ensure unrelated work is detached

Recap

Execution Context attributes

Automatic propagation of Execution Context and QoS

Manual propagation control

XPC propagation and importance boosting

Diagnostics and Queue Debugging

Xcode 6 CPU Report

Xcode 6 Queue Debugging

Activity Tracing

Diagnostics and Queue Debugging

Xcode 6 CPU Report

Xcode 6 Queue Debugging

Activity Tracing

Xcode 6 CPU Report

Activity Tracing

Diagnostics and Queue Debugging

Xcode 6 Queue Debugging

Logical Backtraces

Logical Backtraces

Logical Backtraces

Logical Backtraces

Pending Blocks

Pending Blocks

Pending Blocks

Pending Blocks

Xcode 6 Queue Debugging

Diagnostics and Queue Debugging

Xcode 6 CPU Report

Activity Tracing

Activities in Crash Reports
Crashed Thread: 0 Dispatch queue: com.apple.main-thread
!
Exception Type: EXC_CRASH (SIGABRT)
Exception Codes: 0x0000000000000000, 0x0000000000000000
!
Breadcrumb Trail (reverse chronological seconds):
6 Query directory using NSRunLoop (Activity ID: 0x0000008f00000002)
15 Query directory using NSRunLoop
!
Thread 0 Crashed:: Dispatch queue: com.apple.main-thread
0 com.apple.Query-Directory 0x00000001000027ea -[QDAppDelegate query:foundResults:error:] + 554
1 com.apple.OpenDirectory 0x00007fff9066ec88 __delegate_callback + 388
2 com.apple.CFOpenDirectory 0x00007fff84750bed _query_perform + 568
3 com.apple.CoreFoundation 0x00007fff8964e1f1 __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__ + 17
• • •
16 com.apple.AppKit 0x00007fff83c01a9e NSApplicationMain + 1778
17 com.apple.Query-Directory 0x0000000100001a82 main + 34
18 libdyld.dylib 0x00007fff874af5c9 start + 1
!
Activity ID: 0x0000008f00000002
Activity Name: sendAction:
Activity Breadcrumb: Query directory using NSRunLoop
Activity Running Time: 6.028601 sec
Activity Failure Reason: none detected
!
Trace Messages (reverse chronological seconds):
5.866399 Query Directory 0x0000000100000000 IPC send
5.866463 Query Directory 0x00000001000027e0 aborting test due to no results
5.866529 Query Directory 0x0000000100000000 IPC send
5.866564 Query Directory 0x0000000100002243 skipping record with UID 210 (not member of 'admin')
5.866583 opendirectoryd 0xffffffff00000000 IPC send
5.866596 opendirectoryd 0xffffffff00021c21 request completed, delivered 1 results
• • •
5.866803 opendirectoryd 0xffffffff00021640 UID: 4129, EUID: 4129, GID: 11, EGID: 11
5.866863 opendirectoryd 0xffffffff00000000 IPC receive
5.866883 Query Directory 0x0000000100000000 IPC send

Additional info about key events leading up to crash

Detailed messages associated with the crash point

Activities in Crash Reports
Crashed Thread: 0 Dispatch queue: com.apple.main-thread
!
Exception Type: EXC_CRASH (SIGABRT)
Exception Codes: 0x0000000000000000, 0x0000000000000000
!
Breadcrumb Trail (reverse chronological seconds):
6 Query directory using NSRunLoop (Activity ID: 0x0000008f00000002)
15 Query directory using NSRunLoop
!
Thread 0 Crashed:: Dispatch queue: com.apple.main-thread
0 com.apple.Query-Directory 0x00000001000027ea -[QDAppDelegate query:foundResults:error:] + 554
1 com.apple.OpenDirectory 0x00007fff9066ec88 __delegate_callback + 388
2 com.apple.CFOpenDirectory 0x00007fff84750bed _query_perform + 568
3 com.apple.CoreFoundation 0x00007fff8964e1f1 __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__ + 17
• • •
16 com.apple.AppKit 0x00007fff83c01a9e NSApplicationMain + 1778
17 com.apple.Query-Directory 0x0000000100001a82 main + 34
18 libdyld.dylib 0x00007fff874af5c9 start + 1
!
Activity ID: 0x0000008f00000002
Activity Name: sendAction:
Activity Breadcrumb: Query directory using NSRunLoop
Activity Running Time: 6.028601 sec
Activity Failure Reason: none detected
!
Trace Messages (reverse chronological seconds):
5.866399 Query Directory 0x0000000100000000 IPC send
5.866463 Query Directory 0x00000001000027e0 aborting test due to no results
5.866529 Query Directory 0x0000000100000000 IPC send
5.866564 Query Directory 0x0000000100002243 skipping record with UID 210 (not member of 'admin')
5.866583 opendirectoryd 0xffffffff00000000 IPC send
5.866596 opendirectoryd 0xffffffff00021c21 request completed, delivered 1 results
• • •
5.866803 opendirectoryd 0xffffffff00021640 UID: 4129, EUID: 4129, GID: 11, EGID: 11
5.866863 opendirectoryd 0xffffffff00000000 IPC receive
5.866883 Query Directory 0x0000000100000000 IPC send

Breadcrumb Trail (reverse chronological seconds):
6 Query directory using NSRunLoop (Activity ID: 0x0000008f00000002)
15 Query directory using NSRunLoop

Activities in Crash Reports
Crashed Thread: 0 Dispatch queue: com.apple.main-thread
!
Exception Type: EXC_CRASH (SIGABRT)
Exception Codes: 0x0000000000000000, 0x0000000000000000
!
Breadcrumb Trail (reverse chronological seconds):
6 Query directory using NSRunLoop (Activity ID: 0x0000008f00000002)
15 Query directory using NSRunLoop
!
Thread 0 Crashed:: Dispatch queue: com.apple.main-thread
0 com.apple.Query-Directory 0x00000001000027ea -[QDAppDelegate query:foundResults:error:] + 554
1 com.apple.OpenDirectory 0x00007fff9066ec88 __delegate_callback + 388
2 com.apple.CFOpenDirectory 0x00007fff84750bed _query_perform + 568
3 com.apple.CoreFoundation 0x00007fff8964e1f1 __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__ + 17
• • •
16 com.apple.AppKit 0x00007fff83c01a9e NSApplicationMain + 1778
17 com.apple.Query-Directory 0x0000000100001a82 main + 34
18 libdyld.dylib 0x00007fff874af5c9 start + 1
!
Activity ID: 0x0000008f00000002
Activity Name: sendAction:
Activity Breadcrumb: Query directory using NSRunLoop
Activity Running Time: 6.028601 sec
Activity Failure Reason: none detected
!
Trace Messages (reverse chronological seconds):
5.866399 Query Directory 0x0000000100000000 IPC send
5.866463 Query Directory 0x00000001000027e0 aborting test due to no results
5.866529 Query Directory 0x0000000100000000 IPC send
5.866564 Query Directory 0x0000000100002243 skipping record with UID 210 (not member of 'admin')
5.866583 opendirectoryd 0xffffffff00000000 IPC send
5.866596 opendirectoryd 0xffffffff00021c21 request completed, delivered 1 results
• • •
5.866803 opendirectoryd 0xffffffff00021640 UID: 4129, EUID: 4129, GID: 11, EGID: 11
5.866863 opendirectoryd 0xffffffff00000000 IPC receive
5.866883 Query Directory 0x0000000100000000 IPC send

Activity ID: 0x0000008f00000002
Activity Name: sendAction:
Activity Breadcrumb: Query directory using NSRunLoop
Activity Running Time: 6.028601 sec
Activity Failure Reason: none detected

Activities in Crash Reports
Crashed Thread: 0 Dispatch queue: com.apple.main-thread
!
Exception Type: EXC_CRASH (SIGABRT)
Exception Codes: 0x0000000000000000, 0x0000000000000000
!
Breadcrumb Trail (reverse chronological seconds):
6 Query directory using NSRunLoop (Activity ID: 0x0000008f00000002)
15 Query directory using NSRunLoop
!
Thread 0 Crashed:: Dispatch queue: com.apple.main-thread
0 com.apple.Query-Directory 0x00000001000027ea -[QDAppDelegate query:foundResults:error:] + 554
1 com.apple.OpenDirectory 0x00007fff9066ec88 __delegate_callback + 388
2 com.apple.CFOpenDirectory 0x00007fff84750bed _query_perform + 568
3 com.apple.CoreFoundation 0x00007fff8964e1f1 __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__ + 17
• • •
16 com.apple.AppKit 0x00007fff83c01a9e NSApplicationMain + 1778
17 com.apple.Query-Directory 0x0000000100001a82 main + 34
18 libdyld.dylib 0x00007fff874af5c9 start + 1
!
Activity ID: 0x0000008f00000002
Activity Name: sendAction:
Activity Breadcrumb: Query directory using NSRunLoop
Activity Running Time: 6.028601 sec
Activity Failure Reason: none detected
!
Trace Messages (reverse chronological seconds):
5.866399 Query Directory 0x0000000100000000 IPC send
5.866463 Query Directory 0x00000001000027e0 aborting test due to no results
5.866529 Query Directory 0x0000000100000000 IPC send
5.866564 Query Directory 0x0000000100002243 skipping record with UID 210 (not member of 'admin')
5.866583 opendirectoryd 0xffffffff00000000 IPC send
5.866596 opendirectoryd 0xffffffff00021c21 request completed, delivered 1 results
• • •
5.866803 opendirectoryd 0xffffffff00021640 UID: 4129, EUID: 4129, GID: 11, EGID: 11
5.866863 opendirectoryd 0xffffffff00000000 IPC receive
5.866883 Query Directory 0x0000000100000000 IPC send

Trace Messages (reverse chronological seconds):
5.866399 Query Directory 0x0000000100000000 IPC send
5.866463 Query Directory 0x00000001000027e0 aborting test due to no results
5.866529 Query Directory 0x0000000100000000 IPC send
5.866564 Query Directory 0x0000000100002243 skipping record with UID 210 (not member of 'admin')
5.866583 opendirectoryd 0xffffffff00000000 IPC send
5.866596 opendirectoryd 0xffffffff00021c21 request completed, delivered 1 results
• • •
5.866803 opendirectoryd 0xffffffff00021640 UID: 4129, EUID: 4129, GID: 11, EGID: 11
5.866863 opendirectoryd 0xffffffff00000000 IPC receive
5.866883 Query Directory 0x0000000100000000 IPC send

Using lldb

(lldb) thread info
thread #1: tid = 0x1c93, 0x00007fff9452a37a
libsystem_kernel.dylib`__pthread_kill + 10, queue = 'com.apple.main-thread',
activity = 'sendAction:', 5 messages, stop reason = signal SIGABRT
!
 Activity 'sendAction:', 0x4d00000002
!
 Current Breadcrumb: Query directory using NSRunLoop
!
 5 trace messages:
 aborting test due to no results
 skipping record with UID 210 (not member of 'admin')
 IPC send
 issued query
 canceling previous query for mode: 0

Using lldb

(lldb) thread info
thread #1: tid = 0x1c93, 0x00007fff9452a37a
libsystem_kernel.dylib`__pthread_kill + 10, queue = 'com.apple.main-thread',
activity = 'sendAction:', 5 messages, stop reason = signal SIGABRT
!
 Activity 'sendAction:', 0x4d00000002
!
 Current Breadcrumb: Query directory using NSRunLoop
!
 5 trace messages:
 aborting test due to no results
 skipping record with UID 210 (not member of 'admin')
 IPC send
 issued query
 canceling previous query for mode: 0

Summary

Background

Quality of Service Classes

New QoS and GCD API

Propagation of QoS and Execution Context

Diagnostics and Queue Debugging

More Information

Paul Danbold
Core OS Technologies Evangelist
danbold@apple.com

!

Documentation
Grand Central Dispatch (GCD) Reference
Concurrency Programming Guide
http://developer.apple.com/

Apple Developer Forums
http://devforums.apple.com

Related Sessions

• Improving Your App with Instruments Nob Hill Tuesday 4:30PM

• Writing Energy Efficient Code, Part 1 Russian Hill Wednesday 10:15AM

• Debugging in Xcode 6 Marina Wednesday 10:15AM

• Writing Energy Efficient Code, Part 2 Russian Hill Wednesday 11:30AM

• Fix Bugs Faster using Activity Tracing Russian Hill Thursday 11:30AM

Labs

• Power and Performance Lab Core OS Lab A Thursday 3:15PM

• Core OS Lab Open Hours Core OS Lab A and B Friday 2:00PM

